概化理论
分割
试验装置
程式化事实
计算机科学
网(多面体)
人工智能
集合(抽象数据类型)
训练集
数据集
考试(生物学)
模式识别(心理学)
机器学习
数学
统计
古生物学
几何学
生物
经济
宏观经济学
程序设计语言
作者
Heather Hanegraaf,Rianne A. van der Heijden,E.H. Oei,Marienke van Middelkoop,Stefan Klein,Jukka Hirvasniemi
摘要
To investigate the generalizability of deep learning segmentation models, three different nnU-Nets (2D, 3D, and ensemble) were trained on the OAI dataset and tested on a different dataset. In addition to the nnU-Nets trained on the original OAI data, the style of the test set was transferred to the training set using a CycleGAN method and the nnU-Nets were trained again. Depending on the tissue, the 3D nnU-Net or the ensemble trained on the original or stylized training data had the highest segmentation accuracy in the test set. The results indicate that nnU-Net may generalize well to independent datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI