原位
复合数
方向(向量空间)
材料科学
固态
阴极
财产(哲学)
接口(物质)
Crystal(编程语言)
纳米技术
结晶学
复合材料
计算机科学
化学
工程物理
物理
物理化学
几何学
哲学
数学
有机化学
认识论
程序设计语言
毛细管数
毛细管作用
作者
Sunyoung Lee,Hayoung Park,Jae Young Kim,Jihoon Kim,Min‐Ju Choi,Sang-Wook Han,Sewon Kim,Wonju Kim,Ho Won Jang,Jungwon Park,Kisuk Kang
标识
DOI:10.1038/s41467-024-52226-4
摘要
A critical bottleneck toward all-solid-state batteries lies in how the solid(electrode)-solid(electrolyte) interface is fabricated and maintained over repeated cycles. Conventional composite cathodes, with crystallographically distinct electrode/electrolyte interfaces of random particles, create complexities with varying (electro)chemical compatibilities. To address this, we employ an epitaxial model system where the crystal orientations of cathode and solid electrolyte are precisely controlled, and probe the interfaces in real-time during co-sintering by in situ electron microscopy. The interfacial reaction is highly dependent on crystal orientation/alignment, especially the availability of open ion channels. Interfaces bearing open ion paths of NCM are more susceptible to interdiffusion, but stabilize with the early formed passivation layer. Conversely, interfaces with closed ion pathway exhibit stability at intermediate temperatures, but deteriorate rapidly at high temperature due to oxygen evolution, increasing interfacial resistance. The elucidation of these distinct interfacial behaviors emphasizes the need for decoupling collective interfacial properties to enable rational design in solid-state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI