Local Binary Pattern(LBP) Optimization for Feature Extraction

局部二进制模式 二进制数 萃取(化学) 模式识别(心理学) 特征提取 特征(语言学) 人工智能 计算机科学 数学 色谱法 化学 图像(数学) 直方图 语言学 哲学 算术
作者
Zeinab Sedaghatjoo,Hossein Hosseinzadeh,Bahram Sadeghi Bigham
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2407.18665
摘要

The rapid growth of image data has led to the development of advanced image processing and computer vision techniques, which are crucial in various applications such as image classification, image segmentation, and pattern recognition. Texture is an important feature that has been widely used in many image processing tasks. Therefore, analyzing and understanding texture plays a pivotal role in image analysis and understanding.Local binary pattern (LBP) is a powerful operator that describes the local texture features of images. This paper provides a novel mathematical representation of the LBP by separating the operator into three matrices, two of which are always fixed and do not depend on the input data. These fixed matrices are analyzed in depth, and a new algorithm is proposed to optimize them for improved classification performance. The optimization process is based on the singular value decomposition (SVD) algorithm. As a result, the authors present optimal LBPs that effectively describe the texture of human face images. Several experiment results presented in this paper convincingly verify the efficiency and superiority of the optimized LBPs for face detection and facial expression recognition tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
R先生完成签到,获得积分10
2秒前
小土豆完成签到,获得积分10
2秒前
申小萌完成签到,获得积分10
2秒前
饭小心发布了新的文献求助10
2秒前
kevindeng完成签到,获得积分10
3秒前
3秒前
3秒前
肖俊彦发布了新的文献求助10
3秒前
情怀应助星星泡饭采纳,获得10
3秒前
3秒前
4秒前
4秒前
云_123发布了新的文献求助10
5秒前
所所应助德德采纳,获得10
5秒前
衔尾蛇完成签到,获得积分10
5秒前
烟花应助幸福胡萝卜采纳,获得10
6秒前
shi hui应助乐观发卡采纳,获得10
6秒前
特兰克斯完成签到,获得积分20
6秒前
米斯特刘完成签到,获得积分20
7秒前
沫沫发布了新的文献求助10
7秒前
R先生发布了新的文献求助50
7秒前
通通通关注了科研通微信公众号
7秒前
snowdrift发布了新的文献求助10
7秒前
英姑应助北挽采纳,获得200
7秒前
kevindeng发布了新的文献求助20
8秒前
yx发布了新的文献求助10
8秒前
9秒前
6680668发布了新的文献求助10
9秒前
baobaonaixi完成签到,获得积分10
9秒前
9秒前
9秒前
三石完成签到 ,获得积分10
9秒前
10秒前
11秒前
11秒前
DAYTOY完成签到,获得积分10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762