材料科学
偶氮苯
热能储存
光热治疗
抗弯刚度
辐照
纳米技术
复合材料
光电子学
化学工程
聚合物
物理
工程类
生态学
核物理学
生物
作者
Yudong Wu,Liqi Dong,S.H. Tang,Xiao Liu,Yulin Han,Songge Zhang,Kai Liu,Wei Feng
出处
期刊:Small
[Wiley]
日期:2024-09-10
标识
DOI:10.1002/smll.202404310
摘要
Abstract Azobenzene (azo)‐based photothermal energy storage systems have garnered great interest for their potential in solar energy conversion and storage but suffer from limitations including rely on solvents and specific wavelengths for charging process, short storage lifetime, low heat release temperature during discharging, strong rigidity and poor wearability. To address these issues, an azo‐based fabric composed of tetra ‐ ortho ‐fluorinated photo‐liquefiable azobenzene monomer and polyacrylonitrile fabric template is fabricated using electrospinning. This fabric excels in efficient photo‐charging (green light) and discharging (blue light) under visible light range, solvent‐free operation, long‐term energy storage (706 days), and good capacity of releasing high‐temperature heat (80–95 °C) at room temperature and cold environments. In addition, the fabric maintains high flexibility without evident loss of energy‐storage performance upon 1500 bending cycles, 18‐h washing or 6‐h soaking. The generated heat from charged fabric is facilitated by the Z ‐to‐ E isomerization energy, phase transition latent heat, and the photothermal effect of 420 nm light irradiation. Meanwhile, the temperature of heat release can be personalized for thermal management by adjusting the light intensity. It is applicable for room‐temperature thermal therapy and can provide heat to the body in cold environments, that presenting a promising candidate for wearable personal thermal management.
科研通智能强力驱动
Strongly Powered by AbleSci AI