作者
Roland Christian Schelker,Jessica Fioravanti,Fabio Mastrogiovanni,Jeremy Baldwin,Nisha Rana,Peng Li,Ping Chen,Timea Vadász,Rosanne Spolski,Christoph Heuser,Dragana Slavkovic‐Lukic,Pedro Noronha,Giuseppe Damiano,Laura Raccosta,Daniela Maggioni,Sree Pullugula,Jian-Xin Lin,Jangsuk Oh,Patrick Grandinetti,Mario Lecce,Laura Hesse,Emilia Kocks,Azucena Martín-Santos,Claudia Gebhard,William G. Telford,Yun Ji,Nicholas P. Restifo,Vincenzo Russo,Michael Rehli,Wolfgang Herr,Warren J. Leonard,Luca Gattinoni
摘要
Abstract High frequencies of stem-like memory T cells in infusion products correlate with superior patient outcomes across multiple T cell therapy trials. Herein, we analyzed a published CRISPR activation screening to identify transcriptional regulators that could be harnessed to augment stem-like behavior in CD8 + T cells. Using IFN-γ production as a proxy for CD8 + T cell terminal differentiation, LMO4 emerged among the top hits inhibiting the development of effectors cells. Consistently, we found that Lmo4 was downregulated upon CD8 + T cell activation but maintained under culture conditions facilitating the formation of stem-like T cells. By employing a synthetic biology approach to ectopically express LMO4 in antitumor CD8 + T cells, we enabled selective expansion and enhanced persistence of transduced cells, while limiting their terminal differentiation and senescence. LMO4 overexpression promoted transcriptional programs regulating stemness, increasing the numbers of stem-like CD8 + memory T cells and enhancing their polyfunctionality and recall capacity. When tested in syngeneic and xenograft tumor models, LMO4 overexpression boosted CD8 + T cell antitumor immunity, resulting in enhanced tumor regression. Rather than directly modulating gene transcription, LMO4 bound to JAK1 and potentiated STAT3 signaling in response to IL-21, inducing the expression of target genes ( Tcf7 , Socs3 , Junb , and Zfp36 ) crucial for memory responses. CRISPR/Cas9-deletion of Stat3 nullified the enhanced memory signature conferred by LMO4, thereby abrogating the therapeutic benefit of LMO4 overexpression. These results establish LMO4 overexpression as an effective strategy to boost CD8 + T cell stemness, providing a new synthetic biology tool to bolster the efficacy of T cell-based immunotherapies.