A Competition for the Diagnosis of Myopic Maculopathy by Artificial Intelligence Algorithms

算法 医学 人工智能 黄斑病 机器学习 分割 眼底(子宫) 计算机科学 验光服务 眼科 视网膜病变 内分泌学 糖尿病
作者
Bo Qian,Bin Sheng,Hao Chen,Xiangning Wang,Tingyao Li,Yixiao Jin,Zhouyu Guan,Zehua Jiang,Yi-Lan Wu,Jinyuan Wang,Ting‐Li Chen,Zhengrui Guo,X. Chen,Dawei Yang,Junlin Hou,Rui Feng,Fan Xiao,Yihao Li,Mostafa El Habib Daho,Lu Li,Ye Ding,Di Liu,Bo Yang,Wenhui Zhu,Yalin Wang,Hyeonmin Kim,Hyeonseob Nam,Huayu Li,Wei‐Chi Wu,Qiang Wu,Rongping Dai,Huating Li,Marcus Ang,Daniel Shu Wei Ting,Carol Y. Cheung,Sheng Wang,Ching‐Yu Cheng,Gavin Siew Wei Tan,Kyoko Ohno-Matsui,Jost B. Jonas,Yingfeng Zheng,Yih‐Chung Tham,Tien Yin Wong,Ya Xing Wang
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:142 (11): 1006-1006 被引量:1
标识
DOI:10.1001/jamaophthalmol.2024.3707
摘要

Importance Myopic maculopathy (MM) is a major cause of vision impairment globally. Artificial intelligence (AI) and deep learning (DL) algorithms for detecting MM from fundus images could potentially improve diagnosis and assist screening in a variety of health care settings. Objectives To evaluate DL algorithms for MM classification and segmentation and compare their performance with that of ophthalmologists. Design, Setting, and Participants The Myopic Maculopathy Analysis Challenge (MMAC) was an international competition to develop automated solutions for 3 tasks: (1) MM classification, (2) segmentation of MM plus lesions, and (3) spherical equivalent (SE) prediction. Participants were provided 3 subdatasets containing 2306, 294, and 2003 fundus images, respectively, with which to build algorithms. A group of 5 ophthalmologists evaluated the same test sets for tasks 1 and 2 to ascertain performance. Results from model ensembles, which combined outcomes from multiple algorithms submitted by MMAC participants, were compared with each individual submitted algorithm. This study was conducted from March 1, 2023, to March 30, 2024, and data were analyzed from January 15, 2024, to March 30, 2024. Exposure DL algorithms submitted as part of the MMAC competition or ophthalmologist interpretation. Main Outcomes and Measures MM classification was evaluated by quadratic-weighted κ (QWK), F1 score, sensitivity, and specificity. MM plus lesions segmentation was evaluated by dice similarity coefficient (DSC), and SE prediction was evaluated by R 2 and mean absolute error (MAE). Results The 3 tasks were completed by 7, 4, and 4 teams, respectively. MM classification algorithms achieved a QWK range of 0.866 to 0.901, an F1 score range of 0.675 to 0.781, a sensitivity range of 0.667 to 0.778, and a specificity range of 0.931 to 0.945. MM plus lesions segmentation algorithms achieved a DSC range of 0.664 to 0.687 for lacquer cracks (LC), 0.579 to 0.673 for choroidal neovascularization, and 0.768 to 0.841 for Fuchs spot (FS). SE prediction algorithms achieved an R 2 range of 0.791 to 0.874 and an MAE range of 0.708 to 0.943. Model ensemble results achieved the best performance compared to each submitted algorithms, and the model ensemble outperformed ophthalmologists at MM classification in sensitivity (0.801; 95% CI, 0.764-0.840 vs 0.727; 95% CI, 0.684-0.768; P = .006) and specificity (0.946; 95% CI, 0.939-0.954 vs 0.933; 95% CI, 0.925-0.941; P = .009), LC segmentation (DSC, 0.698; 95% CI, 0.649-0.745 vs DSC, 0.570; 95% CI, 0.515-0.625; P < .001), and FS segmentation (DSC, 0.863; 95% CI, 0.831-0.888 vs DSC, 0.790; 95% CI, 0.742-0.830; P < .001). Conclusions and Relevance In this diagnostic study, 15 AI models for MM classification and segmentation on a public dataset made available for the MMAC competition were validated and evaluated, with some models achieving better diagnostic performance than ophthalmologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cracker完成签到 ,获得积分10
刚刚
大模型应助可yi采纳,获得10
1秒前
哈哈完成签到 ,获得积分10
1秒前
1秒前
羊白玉完成签到 ,获得积分10
1秒前
汤丽霞发布了新的文献求助10
2秒前
幌子发布了新的文献求助10
2秒前
科研通AI2S应助ixueyi采纳,获得10
2秒前
4秒前
newgeno2003发布了新的文献求助10
5秒前
危机的芸发布了新的文献求助50
5秒前
5秒前
嗷嗷嗷完成签到 ,获得积分10
5秒前
dh完成签到,获得积分10
6秒前
6秒前
7秒前
fortune完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
jzy完成签到,获得积分10
8秒前
8秒前
斯文败类应助渣渣XM采纳,获得10
9秒前
yang发布了新的文献求助10
9秒前
LIHANG发布了新的文献求助10
9秒前
Layla101发布了新的文献求助10
10秒前
11秒前
张鹏煊发布了新的文献求助10
12秒前
英姑应助Ethereal采纳,获得10
12秒前
cyz012568完成签到,获得积分10
13秒前
13秒前
斯文谷秋发布了新的文献求助30
14秒前
江蓠完成签到,获得积分10
14秒前
14秒前
peerless完成签到 ,获得积分10
14秒前
张灬小胖完成签到,获得积分10
15秒前
15秒前
16秒前
蔡雨岑完成签到,获得积分10
16秒前
16秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236471
求助须知:如何正确求助?哪些是违规求助? 2882158
关于积分的说明 8225468
捐赠科研通 2550188
什么是DOI,文献DOI怎么找? 1379074
科研通“疑难数据库(出版商)”最低求助积分说明 648510
邀请新用户注册赠送积分活动 624079