A Competition for the Diagnosis of Myopic Maculopathy by Artificial Intelligence Algorithms

算法 医学 人工智能 黄斑病 机器学习 分割 眼底(子宫) 计算机科学 验光服务 眼科 视网膜病变 糖尿病 内分泌学
作者
Bo Qian,Bin Sheng,Hao Chen,Xiangning Wang,Tingyao Li,Yixiao Jin,Zhouyu Guan,Zehua Jiang,Yi-Lan Wu,Jinyuan Wang,Ting‐Li Chen,Zhengrui Guo,X. Chen,Dawei Yang,Junlin Hou,Rui Feng,Fan Xiao,Yihao Li,Mostafa El Habib Daho,Lu Li
出处
期刊:JAMA Ophthalmology [American Medical Association]
卷期号:142 (11): 1006-1006 被引量:11
标识
DOI:10.1001/jamaophthalmol.2024.3707
摘要

Importance Myopic maculopathy (MM) is a major cause of vision impairment globally. Artificial intelligence (AI) and deep learning (DL) algorithms for detecting MM from fundus images could potentially improve diagnosis and assist screening in a variety of health care settings. Objectives To evaluate DL algorithms for MM classification and segmentation and compare their performance with that of ophthalmologists. Design, Setting, and Participants The Myopic Maculopathy Analysis Challenge (MMAC) was an international competition to develop automated solutions for 3 tasks: (1) MM classification, (2) segmentation of MM plus lesions, and (3) spherical equivalent (SE) prediction. Participants were provided 3 subdatasets containing 2306, 294, and 2003 fundus images, respectively, with which to build algorithms. A group of 5 ophthalmologists evaluated the same test sets for tasks 1 and 2 to ascertain performance. Results from model ensembles, which combined outcomes from multiple algorithms submitted by MMAC participants, were compared with each individual submitted algorithm. This study was conducted from March 1, 2023, to March 30, 2024, and data were analyzed from January 15, 2024, to March 30, 2024. Exposure DL algorithms submitted as part of the MMAC competition or ophthalmologist interpretation. Main Outcomes and Measures MM classification was evaluated by quadratic-weighted κ (QWK), F1 score, sensitivity, and specificity. MM plus lesions segmentation was evaluated by dice similarity coefficient (DSC), and SE prediction was evaluated by R 2 and mean absolute error (MAE). Results The 3 tasks were completed by 7, 4, and 4 teams, respectively. MM classification algorithms achieved a QWK range of 0.866 to 0.901, an F1 score range of 0.675 to 0.781, a sensitivity range of 0.667 to 0.778, and a specificity range of 0.931 to 0.945. MM plus lesions segmentation algorithms achieved a DSC range of 0.664 to 0.687 for lacquer cracks (LC), 0.579 to 0.673 for choroidal neovascularization, and 0.768 to 0.841 for Fuchs spot (FS). SE prediction algorithms achieved an R 2 range of 0.791 to 0.874 and an MAE range of 0.708 to 0.943. Model ensemble results achieved the best performance compared to each submitted algorithms, and the model ensemble outperformed ophthalmologists at MM classification in sensitivity (0.801; 95% CI, 0.764-0.840 vs 0.727; 95% CI, 0.684-0.768; P = .006) and specificity (0.946; 95% CI, 0.939-0.954 vs 0.933; 95% CI, 0.925-0.941; P = .009), LC segmentation (DSC, 0.698; 95% CI, 0.649-0.745 vs DSC, 0.570; 95% CI, 0.515-0.625; P < .001), and FS segmentation (DSC, 0.863; 95% CI, 0.831-0.888 vs DSC, 0.790; 95% CI, 0.742-0.830; P < .001). Conclusions and Relevance In this diagnostic study, 15 AI models for MM classification and segmentation on a public dataset made available for the MMAC competition were validated and evaluated, with some models achieving better diagnostic performance than ophthalmologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助雪白丹亦采纳,获得10
刚刚
进击的巨人完成签到,获得积分10
3秒前
海龟驳回了yar应助
5秒前
klicking发布了新的文献求助10
7秒前
感谢有你完成签到 ,获得积分10
7秒前
温暖的盼山应助velen采纳,获得10
11秒前
雪白丹亦完成签到,获得积分20
11秒前
11秒前
12秒前
Away完成签到,获得积分10
13秒前
15秒前
雪白丹亦发布了新的文献求助10
16秒前
17秒前
18秒前
19秒前
19秒前
oo发布了新的文献求助10
19秒前
Angel完成签到,获得积分20
22秒前
追寻笑寒发布了新的文献求助10
22秒前
zino发布了新的文献求助10
23秒前
sevenvictory应助cat_head采纳,获得10
24秒前
我是老大应助古月采纳,获得30
25秒前
25秒前
25秒前
蚌埠住不了完成签到,获得积分10
25秒前
28秒前
Away发布了新的文献求助10
29秒前
谷安发布了新的文献求助10
30秒前
31秒前
彳亍1117应助聂鸿采纳,获得10
32秒前
elephant51发布了新的文献求助10
32秒前
科研通AI2S应助研友_Z7gWlZ采纳,获得10
33秒前
35秒前
Angel发布了新的文献求助10
35秒前
35秒前
yeyuan1017发布了新的文献求助10
35秒前
37秒前
38秒前
yuhang发布了新的文献求助10
38秒前
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966882
求助须知:如何正确求助?哪些是违规求助? 3512358
关于积分的说明 11162837
捐赠科研通 3247220
什么是DOI,文献DOI怎么找? 1793752
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432