Decoding the neural impact of radical complexity in Chinese characters during working memory task

性格(数学) 工作记忆 特征(语言学) 事件相关电位 任务(项目管理) 认知 心理学 认知心理学 语音识别 汉字 N2pc 计算机科学 模式识别(心理学) 人工智能 神经科学 视觉记忆 语言学 数学 工程类 系统工程 哲学 几何学
作者
Hongli Li,Xin Zhao
出处
期刊:European Journal of Neuroscience [Wiley]
标识
DOI:10.1111/ejn.16508
摘要

Readers of Chinese characters need to recognize how they are formed in order to identify them correctly. However, our understanding of the cognitive processing of characters in working memory is limited. In Experiment 1, using the character N-back task paradigm, electrophysiological data were recorded from 26 participants to investigate the effects of the visual feature of radicals on neural activity during the character recognition, updating and maintenance in the N-back task. Results showed that compound characters required longer response times than single-component characters. For the event-related potentials (ERPs), the compound character condition had more negative N2pc and lower P300 amplitudes than the single-component character condition. In Experiment 2, data from 26 participants were used to analyse the effect of the phonological feature of radicals on neural activity during the character recognition, updating and maintenance in the N-back task. Results showed that there was a larger P200 in the irregular character condition than in the regular character condition, but there was no difference between the regular and the irregular characters in the N2pc, P300 and slow wave (SW) components. The visual feature and the phonological feature of the radicals may have different effects on the character processing. This study reveals the neural effects of Chinese character radicals on cognitive processing in a working memory task and provides behavioural and electrophysiological evidence for a theoretical model of verbal working memory subprocesses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李2003发布了新的文献求助10
刚刚
刚刚
Hou_jiaqi完成签到,获得积分10
刚刚
K珑完成签到,获得积分10
刚刚
SciGPT应助可塔朵采纳,获得10
2秒前
boralia发布了新的文献求助10
2秒前
无花果应助西西采纳,获得10
4秒前
4秒前
传奇3应助buhuola采纳,获得10
4秒前
坚强钻石完成签到,获得积分10
5秒前
我是老大应助优美彩虹采纳,获得30
6秒前
英姑应助懒洋洋采纳,获得30
6秒前
zhu96114748完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
走我带你飞完成签到,获得积分10
9秒前
任性的皮皮虾完成签到,获得积分10
10秒前
zw完成签到 ,获得积分20
10秒前
Andrew完成签到 ,获得积分10
10秒前
听天由命W完成签到 ,获得积分10
11秒前
迷人宛完成签到,获得积分10
12秒前
ngyy发布了新的文献求助10
13秒前
14秒前
万灵竹发布了新的文献求助10
14秒前
17秒前
leena完成签到,获得积分10
19秒前
19秒前
852应助李2003采纳,获得10
21秒前
22秒前
22秒前
22秒前
淡定翠容发布了新的文献求助10
23秒前
英姑应助谦让黎云采纳,获得10
23秒前
坚定黑夜发布了新的文献求助10
24秒前
三三发布了新的文献求助10
24秒前
25秒前
开放念柏发布了新的文献求助30
26秒前
26秒前
今后应助徐徐采纳,获得10
28秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128997
求助须知:如何正确求助?哪些是违规求助? 2779786
关于积分的说明 7744747
捐赠科研通 2434950
什么是DOI,文献DOI怎么找? 1293826
科研通“疑难数据库(出版商)”最低求助积分说明 623432
版权声明 600530