Development and validation of a nomogram to predict impacted ureteral stones via machine learning

列线图 计算机科学 地质学 医学 内科学
作者
Yuanjiong Qi,Shushuai YANG,Jingxian Li,Haonan XING,Qiang Su,S. Wang,Yue Chen,S N Qi
出处
期刊:Minerva urology and nephrology [Edizioni Minerva Medica]
被引量:1
标识
DOI:10.23736/s2724-6051.24.05856-7
摘要

BACKGROUND: To develop and evaluate a nomogram for predicting impacted ureteral stones using some simple and easily available clinical features.METHODS: From June 2019 to July 2022, 480 patients who underwent ureteroscopic lithotripsy (URSL) for ureteral calculi were enrolled in the study. From the eligible study population between June 2019 and December 2020, a training and validation set was randomly generated in a 7:3 ratio. To further evaluate the generalization performance of the nomogram, we performed an additional validation using the data from January 2021 to July 2022. Lasso regression analysis was used to identify the most useful predictive features. Subsequently, a multivariate logistic regression algorithm was applied to select independent predictive features. The predictive performance of the nomogram was assessed using Receiver Operating Characteristic (ROC) curves, calibration curves and decision Curve Analysis (DCA). The Hosmer-Lemeshow Test was utilized to evaluate the overall goodness of fit of the nomogram.RESULTS: Multivariate logistic regression analysis showed that flank pain, hydronephrosis, stone length/width, HU below (Hounsfield unit density of the ureter center below the stone), HU above/below (HU above divided by HU below) and UWT (ureteral wall thickness) were ascertained as independent predictors of impacted ureteral stones. The nomogram showed outstanding performance within the training dataset, with the area under the curve (AUC) of 0.907. Moreover, the AUC was 0.874 in the validation dataset. The ROC curve, calibration curve, DCA curve and Hosmer-Lemeshow Test suggested that the nomogram maintains excellent clinical applicability and demonstrates commendable performance. Similar results were achieved in the test dataset as well.CONCLUSIONS: We established a nomogram that can be effectively used for preoperative diagnosis of impacted ureteral stones, which is of great significance for the treatment of this disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sherry发布了新的文献求助10
刚刚
杨锐发布了新的文献求助10
刚刚
kai完成签到,获得积分10
刚刚
刚刚
2秒前
Janice227完成签到,获得积分10
2秒前
郭郭要努力ya完成签到 ,获得积分0
2秒前
科研通AI5应助kobe采纳,获得10
3秒前
to高坚果发布了新的文献求助10
4秒前
西门明雪完成签到,获得积分10
4秒前
自由的松发布了新的文献求助10
5秒前
7秒前
7秒前
olia发布了新的文献求助10
7秒前
Candice应助孤独树叶采纳,获得10
8秒前
YUJIALING完成签到 ,获得积分10
8秒前
酷波er应助tdtk采纳,获得10
8秒前
冰冰完成签到 ,获得积分20
9秒前
9秒前
9秒前
胡桃夹子发布了新的文献求助30
9秒前
10秒前
syxz0628发布了新的文献求助10
10秒前
都可以完成签到,获得积分10
10秒前
科研通AI5应助qfchen0716网易采纳,获得10
11秒前
JamesPei应助qfchen0716网易采纳,获得10
11秒前
丘比特应助qfchen0716网易采纳,获得10
11秒前
子川发布了新的文献求助10
11秒前
田様应助qfchen0716网易采纳,获得10
11秒前
科目三应助qfchen0716网易采纳,获得10
12秒前
黄紫红蓝应助qfchen0716网易采纳,获得10
12秒前
rr发布了新的文献求助10
12秒前
科目三应助qfchen0716网易采纳,获得10
12秒前
Orange应助qfchen0716网易采纳,获得10
12秒前
FashionBoy应助qfchen0716网易采纳,获得10
12秒前
今后应助qfchen0716网易采纳,获得10
12秒前
汉堡包应助Rober采纳,获得10
12秒前
13秒前
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194361
求助须知:如何正确求助?哪些是违规求助? 4376657
关于积分的说明 13629793
捐赠科研通 4231614
什么是DOI,文献DOI怎么找? 2321134
邀请新用户注册赠送积分活动 1319292
关于科研通互助平台的介绍 1269676