材料科学
热电效应
工程物理
热电材料
类型(生物学)
光电子学
纳米技术
复合材料
热力学
热导率
生态学
物理
生物
工程类
作者
Hyunyong Cho,Song Yi Back,Naoki Sato,Zihang Liu,Weihong Gao,Longquan Wang,Nguyen Duy Hieu,Naoyuki Kawamoto,Takao Mori
标识
DOI:10.1002/adfm.202407017
摘要
Abstract Thermoelectric cooling materials based on Bi 2 Te 3 have a long history of unsurpassed performance near room temperature. Recently, research into price‐competitive Mg 3 (Bi, Sb) 2 ‐based materials are focused on replacing traditional cooling materials. Here, the thermoelectric properties of Mg 3.2 Bi 1.998−x Sb x Te 0.002 Cu 0.005 (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) polycrystalline compounds are investigated. In all temperature regions, electrical resistivity and Seebeck coefficient are increased with Sb concentration. The electronic transport properties of Sb‐alloyed compounds are maximized by synergistically combined band engineering approaches such as band structure change caused by lattice strain, increased electronic density of states, and chemical potential shift, leading to exceptionally high‐power factor values of over 3.0 mW m −1 K −2 at room temperature. Furthermore, with increasing Sb content, thermal conductivity values are systematically reduced due to the promotion of alloy scattering of phonons and suppression of the bipolar contribution. Consequently, these multiple approaches significantly enhance thermoelectric performance, resulting in an enhancement of thermoelectric figure‐of‐merit zT above 1.1 at 348–423 K. Additionally, a zT avg of 1.1 is recorded at 300–450 K, making it an unrivaled value among the reported n‐type Mg 3 Bi 2 ‐based thermoelectric materials. Overall, this work demonstrates that Mg 3 Bi 2 ‐based materials are more promising for thermoelectric cooling applications compared to Bi 2 Te 3 ‐based materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI