Predicting Abrupt Depletion of Dissolved Oxygen in Chaohu Lake using CNN-BiLSTM with Improved Attention Mechanism

机制(生物学) 环境科学 环境化学 溶解有机碳 化学 氧气 环境工程 认识论 哲学 有机化学
作者
Xiaoyu Wang,Xianqiang Tang,Mei Zhu,Zhennan Liu,Guoqing Wang
出处
期刊:Water Research [Elsevier]
卷期号:: 122027-122027
标识
DOI:10.1016/j.watres.2024.122027
摘要

Depletion of dissolved oxygen (DO) is a significant incentive for biological catastrophic events in freshwater lakes. Although predicting the DO concentrations in lakes with high-frequency real-time data to prevent hypoxic events is effective, few related experimental studies were made. In this study, a short-term predicting model was developed for DO concentrations in three problematic areas in China's Chaohu Lake. To predict the DO concentrations at these representative sites, which coincide with biological abnormal death areas, water quality indicators at the three sampling sites and hydrometeorological features were adopted as input variables. The monitoring data were collected every 4 h between 2020 and 2023 and applied separately to train and test the model at a ratio of 8:2. A new AC-BiLSTM coupling model of the convolution neural network (CNN) and the bidirectional long short-term memory (BiLSTM) with the attention mechanism (AM) was proposed to tackle characteristics of discontinuous dynamic change of DO concentrations in long time series. Compared with the BiLSTM and CNN-BiLSTM models, the AC-BiLSTM showed better performance in the evaluation criteria of MSE, MAE, and R
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
CodeCraft应助SiDi采纳,获得10
1秒前
刘丽梅完成签到 ,获得积分10
3秒前
聪明小虾米完成签到,获得积分10
4秒前
hyx完成签到,获得积分10
5秒前
所所应助獭獭采纳,获得10
8秒前
Cynthia发布了新的文献求助30
9秒前
15秒前
缥缈念云发布了新的文献求助10
18秒前
神经蛙完成签到 ,获得积分10
21秒前
24秒前
平淡的初翠完成签到 ,获得积分10
26秒前
菡123456发布了新的文献求助10
28秒前
fai发布了新的文献求助10
29秒前
废羊羊完成签到 ,获得积分10
29秒前
31秒前
甜美的成败完成签到,获得积分10
32秒前
CMUSK完成签到,获得积分10
33秒前
鱼鱼完成签到,获得积分10
33秒前
感动的小鸭子完成签到 ,获得积分10
36秒前
冰河完成签到,获得积分10
41秒前
fai完成签到,获得积分10
42秒前
45秒前
三七应助科研通管家采纳,获得10
49秒前
赘婿应助科研通管家采纳,获得10
49秒前
Ava应助科研通管家采纳,获得10
49秒前
芯止谭轩应助科研通管家采纳,获得10
49秒前
ding应助科研通管家采纳,获得10
50秒前
pluto应助科研通管家采纳,获得10
50秒前
50秒前
50秒前
50秒前
科研通AI2S应助科研通管家采纳,获得30
50秒前
斯文败类应助科研通管家采纳,获得10
50秒前
maox1aoxin应助科研通管家采纳,获得80
50秒前
情怀应助科研通管家采纳,获得10
50秒前
maox1aoxin应助科研通管家采纳,获得80
50秒前
50秒前
50秒前
hhh发布了新的文献求助10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352334
求助须知:如何正确求助?哪些是违规求助? 2977561
关于积分的说明 8680037
捐赠科研通 2658501
什么是DOI,文献DOI怎么找? 1455839
科研通“疑难数据库(出版商)”最低求助积分说明 674121
邀请新用户注册赠送积分活动 664666