An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis

医学 多发性硬化 人工智能 机器学习 风险因素 计算机科学 病理 免疫学
作者
Shima Pilehvari,Yasser Morgan,Peng Wei
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:89: 105761-105761
标识
DOI:10.1016/j.msard.2024.105761
摘要

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
susan完成签到,获得积分10
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助30
2秒前
皎皎完成签到,获得积分10
2秒前
2秒前
希望天下0贩的0应助mindseye采纳,获得10
3秒前
可爱晓灵完成签到,获得积分10
3秒前
领导范儿应助hhing采纳,获得10
3秒前
陈俐俐完成签到,获得积分10
3秒前
1111111发布了新的文献求助20
4秒前
4秒前
4秒前
lily发布了新的文献求助10
5秒前
Jasper应助文车采纳,获得10
5秒前
黄浩发布了新的文献求助10
5秒前
zzz完成签到,获得积分10
6秒前
小马甲应助淡然寄瑶采纳,获得10
6秒前
木头人呐完成签到 ,获得积分10
6秒前
Y不吃香菜完成签到 ,获得积分10
6秒前
7秒前
WHTTTTT发布了新的文献求助10
7秒前
杨潇丶丶发布了新的文献求助10
7秒前
aerfas完成签到,获得积分10
8秒前
8秒前
8秒前
GYY发布了新的文献求助10
8秒前
xiao完成签到,获得积分10
8秒前
ffffabab完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
太叔丹翠完成签到 ,获得积分10
10秒前
我是老大应助tonyfountain采纳,获得10
10秒前
10秒前
彭大啦啦完成签到,获得积分10
10秒前
陌陌关注了科研通微信公众号
10秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729