An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis

医学 多发性硬化 人工智能 机器学习 风险因素 计算机科学 病理 免疫学
作者
Shima Pilehvari,Yasser Morgan,Peng Wei
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:89: 105761-105761
标识
DOI:10.1016/j.msard.2024.105761
摘要

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秋子david发布了新的文献求助10
刚刚
刚刚
1秒前
自然的白风完成签到,获得积分10
1秒前
1秒前
华仔应助小鲸采纳,获得10
1秒前
GuiChenli完成签到,获得积分10
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
俊逸的问兰完成签到,获得积分10
4秒前
4秒前
酷波er应助Arhtur采纳,获得10
4秒前
可爱的函函应助银鱼在游采纳,获得10
4秒前
songshu驳回了123应助
4秒前
982289172完成签到,获得积分10
4秒前
称心的以蕊完成签到,获得积分10
5秒前
洁净半梦发布了新的文献求助10
5秒前
优秀的雨筠完成签到 ,获得积分10
5秒前
李健应助家秋白采纳,获得10
5秒前
5秒前
czp完成签到,获得积分10
5秒前
wsg发布了新的文献求助10
5秒前
5秒前
夕夕成玦完成签到 ,获得积分10
6秒前
6秒前
开心元霜发布了新的文献求助20
6秒前
吕小软完成签到,获得积分10
6秒前
活力半蕾发布了新的文献求助10
6秒前
先流浪完成签到 ,获得积分10
6秒前
小溪发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助no采纳,获得10
7秒前
7秒前
佐小叶完成签到 ,获得积分10
7秒前
儒雅鞋子完成签到,获得积分10
7秒前
7秒前
秋子david完成签到,获得积分10
8秒前
思源应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645714
求助须知:如何正确求助?哪些是违规求助? 4769624
关于积分的说明 15031726
捐赠科研通 4804481
什么是DOI,文献DOI怎么找? 2569019
邀请新用户注册赠送积分活动 1526095
关于科研通互助平台的介绍 1485700