An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis

医学 多发性硬化 人工智能 机器学习 风险因素 计算机科学 病理 免疫学
作者
Shima Pilehvari,Yasser Morgan,Peng Wei
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:89: 105761-105761
标识
DOI:10.1016/j.msard.2024.105761
摘要

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中以菱发布了新的文献求助10
刚刚
田様应助lbx采纳,获得10
刚刚
刚刚
成就幼荷发布了新的文献求助10
刚刚
zpbb完成签到,获得积分10
1秒前
MoleMed发布了新的文献求助10
1秒前
1秒前
1秒前
领导范儿应助miaoww采纳,获得10
2秒前
DXXX完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
character577完成签到,获得积分10
2秒前
王汉韬完成签到,获得积分20
2秒前
2秒前
文泽完成签到,获得积分10
3秒前
hu970发布了新的文献求助10
3秒前
震动的听枫完成签到,获得积分10
3秒前
丘比特应助wzg666采纳,获得10
3秒前
3秒前
不二完成签到,获得积分10
3秒前
璇璇完成签到 ,获得积分10
4秒前
深情安青应助郑开司09采纳,获得10
4秒前
4秒前
5秒前
杨杨杨发布了新的文献求助10
5秒前
AA发布了新的文献求助10
5秒前
哎呀妈呀发布了新的文献求助10
5秒前
5秒前
活力雁枫完成签到,获得积分10
6秒前
封尘逸动完成签到,获得积分10
6秒前
Khr1stINK发布了新的文献求助10
7秒前
Water103发布了新的文献求助10
7秒前
7秒前
彩色的德地完成签到,获得积分10
7秒前
ddd完成签到,获得积分10
7秒前
7秒前
DONGJUN发布了新的文献求助10
7秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672