An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis

医学 多发性硬化 人工智能 机器学习 风险因素 计算机科学 病理 免疫学
作者
Shima Pilehvari,Yasser Morgan,Peng Wei
出处
期刊:Multiple sclerosis and related disorders [Elsevier]
卷期号:89: 105761-105761
标识
DOI:10.1016/j.msard.2024.105761
摘要

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶素绿完成签到,获得积分10
刚刚
快乐书双发布了新的文献求助10
刚刚
Autin完成签到,获得积分0
刚刚
开心的饼干完成签到,获得积分20
1秒前
LQ完成签到,获得积分10
1秒前
1秒前
关畅澎完成签到,获得积分10
1秒前
2秒前
梅比乌斯博士救救我完成签到 ,获得积分10
2秒前
whuhustwit完成签到,获得积分10
2秒前
wintersss完成签到,获得积分10
2秒前
跳跃的幻露完成签到,获得积分10
3秒前
3秒前
3秒前
深情安青应助18485649437采纳,获得10
3秒前
扁舟灬完成签到,获得积分10
3秒前
白子墨发布了新的文献求助10
3秒前
羽言完成签到,获得积分10
4秒前
4秒前
4秒前
随风发布了新的文献求助10
4秒前
合成研究菜鸟完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助20
4秒前
成就祥发布了新的文献求助10
4秒前
充电宝应助钙帮弟子采纳,获得10
4秒前
zqy完成签到 ,获得积分10
5秒前
abner发布了新的文献求助10
5秒前
luoziwuhui完成签到,获得积分10
6秒前
九九完成签到,获得积分10
6秒前
咚咚糖发布了新的文献求助10
6秒前
93发布了新的文献求助10
6秒前
小蘑菇应助谭访冬采纳,获得10
7秒前
mawenxing完成签到,获得积分10
7秒前
风灵无畏完成签到,获得积分10
7秒前
坦率棉花糖完成签到,获得积分10
7秒前
月月完成签到,获得积分10
8秒前
kkkrystal完成签到,获得积分10
8秒前
8秒前
嘟嘟等文章完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959