An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis

医学 多发性硬化 人工智能 机器学习 风险因素 计算机科学 病理 免疫学
作者
Shima Pilehvari,Yasser Morgan,Peng Wei
出处
期刊:Multiple sclerosis and related disorders [Elsevier BV]
卷期号:89: 105761-105761
标识
DOI:10.1016/j.msard.2024.105761
摘要

Medical research offers potential for disease prediction, like Multiple Sclerosis (MS). This neurological disorder damages nerve cell sheaths, with treatments focusing on symptom relief. Manual MS detection is time-consuming and error prone. Though MS lesion detection has been studied, limited attention has been paid to clinical analysis and computational risk factor prediction. Artificial intelligence (AI) techniques and Machine Learning (ML) methods offer accurate and effective alternatives to mapping MS progression. However, there are challenges in accessing clinical data and interdisciplinary collaboration. By analyzing 103 papers, we recognize the trends, strengths and weaknesses of AI, ML, and statistical methods applied to MS diagnosis. AI/ML-based approaches are suggested to identify MS risk factors, select significant MS features, and improve the diagnostic accuracy, such as Rule-based Fuzzy Logic (RBFL), Adaptive Fuzzy Inference System (ANFIS), Artificial Neural Network methods (ANN), Support Vector Machine (SVM), and Bayesian Networks (BNs). Meanwhile, applications of the Expanded Disability Status Scale (EDSS) and Magnetic Resonance Imaging (MRI) can enhance MS diagnostic accuracy. By examining established risk factors like obesity, smoking, and education, some research tackled the issue of disease progression. The performance metrics varied across different aspects of MS studies: Diagnosis: Sensitivity ranged from 60 % to 98 %, specificity from 60 % to 98 %, and accuracy from 61 % to 97 %. Prediction: Sensitivity ranged from 76 % to 98 %, specificity from 65 % to 98 %, and accuracy from 62 % to 99 %. Segmentation: Accuracy ranged up to 96.7 %. Classification: Sensitivity ranged from 78 % to 97.34 %, specificity from 65 % to 99.32 %, and accuracy from 71 % to 97.94 %. Furthermore, the literature shows that combining techniques can improve efficiency, exploiting their strengths for better overall performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王同志发布了新的文献求助10
1秒前
1秒前
2秒前
兮兮发布了新的文献求助20
2秒前
2秒前
顺心致远完成签到,获得积分10
2秒前
嘉言懿行发布了新的文献求助10
2秒前
orixero应助安静店员采纳,获得10
4秒前
5秒前
5秒前
6秒前
kksk发布了新的文献求助10
7秒前
浮游应助糖异生采纳,获得10
7秒前
8秒前
兔图图发布了新的文献求助10
9秒前
10秒前
jbtjht发布了新的文献求助10
11秒前
ssssen发布了新的文献求助10
12秒前
Lucas应助ww采纳,获得30
13秒前
冬虫夏草发布了新的文献求助10
13秒前
善学以致用应助杜小杜采纳,获得10
15秒前
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
科目三应助嘉言懿行采纳,获得10
19秒前
55155255完成签到,获得积分10
20秒前
jbtjht完成签到,获得积分10
20秒前
vippp发布了新的文献求助10
21秒前
haorandu发布了新的文献求助10
21秒前
21秒前
22秒前
李善聪完成签到,获得积分10
22秒前
22秒前
研友_ngX12Z发布了新的文献求助10
23秒前
anya发布了新的文献求助200
25秒前
科研通AI6应助morena采纳,获得30
25秒前
Aurora完成签到,获得积分10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467