PCFR-Net: parallel cascaded feature reconstruction network with multibranch asymmetric residual attention for hippocampus segmentation

残余物 计算机科学 分割 人工智能 特征(语言学) 模式识别(心理学) 图像分割 特征提取 计算机视觉 算法 语言学 哲学
作者
Cheng Ding,Lei Yu,Huiqi Wang,Y. G. Xie
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (06)
标识
DOI:10.1117/1.jei.33.6.063002
摘要

The hippocampus, a crucial structure in the brain, plays a significant role in the early diagnosis of brain disorders such as Alzheimer's disease through its structural and volumetric changes. To address the medical challenge of accurately segmenting the hippocampus, we propose a lightweight hybrid segmentation network called a parallel cascaded feature reconstruction network (PCFR-Net). This network integrates the advantages of global self-attention and local convolution while utilizing fewer model parameters. Specifically, we introduce a feature reconstruction (FR) module and a multibranch asymmetric residual attention module aimed at accurate segmentation of hippocampus magnetic resonance imaging. The model combines the strengths of the transformer in capturing long-distance relationships and adapting to irregular shapes, as well as the FR block, which can reduce the redundancy in space and channels during feature extraction, and then reconstructs feature maps to enhance the representative feature learning. In addition, the multibranch residual attention module employs the asymmetric residual convolution block, enabling fine-grained feature extraction along the length, width, and depth directions at multiple scales. Remarkably, the proposed PCFR-Net achieves a Dice similarity coefficient (DSC) of 92.74% and an Intersection over Union (IoU) of 86.5% on the Medical Segmentation Decathlon, as well as a DSC of 93.86% and an IoU of 89.29% on the Alzheimer's Disease Neuroimaging Initiative dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
Baywreath完成签到,获得积分10
3秒前
竹筏过海应助Lei采纳,获得30
3秒前
马皓发布了新的文献求助10
3秒前
4秒前
田字格发布了新的文献求助10
5秒前
北极星发布了新的文献求助10
6秒前
7秒前
南原给南原的求助进行了留言
7秒前
8秒前
Wenjian7761完成签到,获得积分10
8秒前
缪缪发布了新的文献求助10
10秒前
老实的石头完成签到,获得积分10
10秒前
小吴同学发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
腼腆的若雁完成签到,获得积分10
14秒前
14秒前
fuiee发布了新的文献求助10
14秒前
小开心完成签到,获得积分10
14秒前
北极星完成签到,获得积分10
15秒前
cccc完成签到 ,获得积分10
15秒前
16秒前
Dogged完成签到 ,获得积分10
17秒前
耶啵耶啵完成签到 ,获得积分10
18秒前
mentality完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
19秒前
VDC应助机智寻雪采纳,获得30
19秒前
19秒前
jack_kunn发布了新的文献求助30
20秒前
21秒前
21秒前
田様应助linkman采纳,获得10
21秒前
zik完成签到 ,获得积分10
22秒前
汉堡包应助纷飞漫天寂寥采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714