EXPRESS: Where A-B Testing Goes Wrong: How Divergent Delivery Affects What Online Experiments Cannot (and Can) Tell You about How Customers Respond to Advertising

推论 广告 考试(生物学) 激励 选择(遗传算法) 业务 展示广告 因果推理 随机试验 在线广告 用户生成的内容 定向广告 内容交付 万维网 计算机科学 数据科学 互联网 机器学习 计量经济学 人工智能 社会化媒体 古生物学 微观经济学 经济 病理 生物 医学 计算机网络
作者
Michael Braun,Eric M. Schwartz
出处
期刊:Journal of Marketing [SAGE Publishing]
被引量:1
标识
DOI:10.1177/00222429241275886
摘要

Marketers use online advertising platforms to compare user responses to different ad content. But platforms’ experimentation tools deliver different ads to distinct and undetectably optimized mixes of users that vary across ads, even during the test. Because exposure to ads in the test is non-random, the estimated comparisons confound the effect of the ad content with the effect of algorithmic targeting. This means experimenters may not be learning what they think they are learning from ad A-B tests. The authors document these “divergent delivery” patterns during an online experiment for the first time. They explain how algorithmic targeting, user heterogeneity, and data aggregation conspire to confound the magnitude, and even the sign, of ad A-B test results. Analytically, the paper extends the potential outcomes model of causal inference to treat random assignment of ads and user exposure to ads as separate experimental design elements. Managerially, the authors explain why platforms lack incentives to allow experimenters to untangle the effects of ad content from proprietary algorithmic selection of users when running A-B tests. Given that experimenters have diverse reasons for comparing user responses to ads, the authors offer tailored prescriptive guidance to experimenters based on their specific goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
zszs应助yuchangkun采纳,获得10
1秒前
ZZL完成签到,获得积分10
1秒前
1秒前
2秒前
飞快的稚晴完成签到,获得积分10
3秒前
3秒前
小马甲应助koyo采纳,获得10
3秒前
4秒前
博士早日毕业完成签到,获得积分10
4秒前
4秒前
4秒前
力劈华山完成签到,获得积分10
5秒前
mcs发布了新的文献求助10
5秒前
思源应助司空豁采纳,获得10
5秒前
5秒前
6秒前
6秒前
小东发布了新的文献求助10
7秒前
anitachiu1104发布了新的文献求助10
8秒前
大模型应助胖虎采纳,获得10
8秒前
Fons发布了新的文献求助20
9秒前
英姑应助我是张铁柱·采纳,获得10
10秒前
搜集达人应助老高采纳,获得30
12秒前
12秒前
12秒前
13秒前
所所应助淡淡夕阳采纳,获得10
13秒前
Ghhhhn发布了新的文献求助10
13秒前
丘比特应助ren采纳,获得10
14秒前
14秒前
唠叨的以柳完成签到,获得积分20
14秒前
15秒前
Hello应助颜朗采纳,获得10
16秒前
开放如天发布了新的文献求助10
16秒前
青山随云走完成签到,获得积分10
17秒前
不渝发布了新的文献求助20
17秒前
李健应助杨雨采纳,获得10
17秒前
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956302
求助须知:如何正确求助?哪些是违规求助? 3502493
关于积分的说明 11108085
捐赠科研通 3233179
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870515
科研通“疑难数据库(出版商)”最低求助积分说明 802105