微流控
纳米技术
杰纳斯
材料科学
千分尺
丝素
生物相容性
制作
生物相容性材料
生物医学工程
工程类
机械工程
丝绸
复合材料
医学
替代医学
病理
冶金
作者
Shuaizhong Zhang,Xinghao Hu,Meng Li,Ugur Bozuyuk,Rongjing Zhang,Eylül Suadiye,Jie Han,Fan Wang,Patrick R. Onck,Metin Sitti
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2023-03-22
卷期号:9 (12)
被引量:21
标识
DOI:10.1126/sciadv.adf9462
摘要
Biological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coordinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and materials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and metachronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable metachronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical engineering, and biocompatible implants.
科研通智能强力驱动
Strongly Powered by AbleSci AI