AOSLO-net: A Deep Learning-Based Method for Automatic Segmentation of Retinal Microaneurysms From Adaptive Optics Scanning Laser Ophthalmoscopy Images

扫描激光检眼镜 分割 人工智能 检眼镜 计算机科学 计算机视觉 视网膜 眼科 医学
作者
Qian Zhang,Konstantina Sampani,Mengjia Xu,Shengze Cai,Yixiang Deng,He Li,Jennifer K. Sun,George Em Karniadakis
出处
期刊:Translational Vision Science & Technology [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:11 (8): 7-7 被引量:16
标识
DOI:10.1167/tvst.11.8.7
摘要

Purpose: Accurate segmentation of microaneurysms (MAs) from adaptive optics scanning laser ophthalmoscopy (AOSLO) images is crucial for identifying MA morphologies and assessing the hemodynamics inside the MAs. Herein, we introduce AOSLO-net to perform automatic MA segmentation from AOSLO images of diabetic retinas. Method: AOSLO-net is composed of a deep neural network based on UNet with a pretrained EfficientNet as the encoder. We have designed customized preprocessing and postprocessing policies for AOSLO images, including generation of multichannel images, de-noising, contrast enhancement, ensemble and union of model predictions, to optimize the MA segmentation. AOSLO-net is trained and tested using 87 MAs imaged from 28 eyes of 20 subjects with varying severity of diabetic retinopathy (DR), which is the largest available AOSLO dataset for MA detection. To avoid the overfitting in the model training process, we augment the training data by flipping, rotating, scaling the original image to increase the diversity of data available for model training. Results: The validity of the model is demonstrated by the good agreement between the predictions of AOSLO-net and the MA masks generated by ophthalmologists and skillful trainees on 87 patient-specific MA images. Our results show that AOSLO-net outperforms the state-of-the-art segmentation model (nnUNet) both in accuracy (e.g., intersection over union and Dice scores), as well as computational cost. Conclusions: We demonstrate that AOSLO-net provides high-quality of MA segmentation from AOSLO images that enables correct MA morphological classification. Translational Relevance: As the first attempt to automatically segment retinal MAs from AOSLO images, AOSLO-net could facilitate the pathological study of DR and help ophthalmologists make disease prognoses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上善若火完成签到 ,获得积分10
1秒前
桔梗应助dede采纳,获得10
1秒前
2秒前
科研通AI5应助wuqi采纳,获得10
2秒前
科研通AI5应助迅速煎蛋采纳,获得10
2秒前
FashionBoy应助怕黑的擎采纳,获得10
2秒前
3秒前
3秒前
4秒前
纯子完成签到,获得积分10
6秒前
7秒前
ranjiao发布了新的文献求助10
8秒前
田様应助亢kxh采纳,获得10
9秒前
RC_Wang应助冷傲迎梦采纳,获得10
9秒前
h_hellow完成签到,获得积分10
10秒前
烟花应助李立轩采纳,获得10
10秒前
京1kqq发布了新的文献求助10
10秒前
11秒前
JamesPei应助午饭鱼采纳,获得50
12秒前
艺阳完成签到,获得积分10
12秒前
12秒前
细节完成签到,获得积分10
13秒前
耶耶耶发布了新的文献求助10
14秒前
dingdong258发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
怕黑的擎发布了新的文献求助10
17秒前
Lucas应助路过你的夏采纳,获得30
17秒前
现实的如花完成签到,获得积分10
17秒前
17秒前
18秒前
h_hellow发布了新的文献求助10
18秒前
领导范儿应助Bubble采纳,获得10
18秒前
充电宝应助研友_Z63kg8采纳,获得10
19秒前
脑洞疼应助木质素爱好者采纳,获得10
19秒前
20秒前
tingz发布了新的文献求助10
20秒前
21秒前
渊崖曙春应助现实的如花采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512208
求助须知:如何正确求助?哪些是违规求助? 3094667
关于积分的说明 9224183
捐赠科研通 2789467
什么是DOI,文献DOI怎么找? 1530709
邀请新用户注册赠送积分活动 711048
科研通“疑难数据库(出版商)”最低求助积分说明 706518