电催化剂
催化作用
材料科学
阴极
电流密度
选择性
化学工程
功率密度
退火(玻璃)
可逆氢电极
异质结
密度泛函理论
纳米技术
电极
化学
电化学
光电子学
物理化学
计算化学
复合材料
生物化学
功率(物理)
物理
工程类
量子力学
参比电极
作者
Junjie Wang,Zhao Li,Zhaozhao Zhu,Jinxia Jiang,Yulan Li,Jin‐Ju Chen,Xiaobin Niu,Jun Song Chen,Rui Wu
标识
DOI:10.1016/j.jechem.2022.07.037
摘要
Electrocatalytic CO2 reduction into CO has been regarded as one of the most promising strategies for sustainable carbon cycles at ambient conditions, but still faces challenges to achieve both high product selectivity and large current density. Here, we report a Ni4N/Ni3ZnC0.7 heterostructured electrocatalyst embedded in accordion-like N-doped carbon through a simple molten salt annealing strategy. The optimal Ni4N/Ni3ZnC0.7 electrocatalyst achieves a high CO Faraday efficiency of 92.3% and a large total current density of −15.8 mA cm−2 at −0.8 V versus reversible hydrogen electrode, together with a long-term stability about 30 h. Density functional theory results reveal that the energy barrier for *COOH intermediate formation largely decreased on Ni4N/Ni3ZnC0.7 heterostructure compared with Ni4N and Ni3ZnC0.7, thus giving rise to enhanced activity and selectivity. A rechargeable Zn-CO2 battery is further assembled with Ni4N/Ni3ZnC0.7 catalyst as the cathode, which shows a maximum power density of 0.85 mW cm−2 and excellent stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI