New Explainable Deep CNN Design for Classifying Breast Tumor Response Over Neoadjuvant Chemotherapy

乳腺癌 磁共振成像 医学 深度学习 化疗 接收机工作特性 乳房磁振造影 卷积神经网络 放射科 癌症 肿瘤科 计算机科学 人工智能 内科学 乳腺摄影术
作者
Mohammed El Adoui,Stylianos Drisis,Mohammed Benjelloun
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (5): 526-533 被引量:3
标识
DOI:10.2174/1573405618666220803124426
摘要

To reduce breast tumor size before surgery, Neoadjuvant Chemotherapy (NAC) is applied systematically to patients with local breast cancer. However, with the existing clinical protocols, it is not yet possible to have an early prediction of the effect of chemotherapy on a breast tumor. Predicting the response to chemotherapy could reduce toxicity and delay effective treatment. Computational analysis of Dynamic Contrast-Enhanced Magnetic Resonance Images (DCE-MRI) through Deep Convolution Neural Network (CNN) has proved a significant performance in classifying responders and no responder's patients. This study intends to present a new explainable Deep Learning (DL) model predicting the breast cancer response to chemotherapy based on multiple MRI inputs.In this study, a cohort of 42 breast cancer patients who underwent chemotherapy was used to train and validate the proposed DL model. This dataset was provided by the Jules Bordet institute of radiology in Brussels, Belgium. 14 external subjects were used to validate the DL model to classify responding or non-responding patients on temporal DCE-MRI volumes. The model performance was assessed by the Area Under the receiver operating characteristic Curve (AUC), accuracy, and features map visualization according to pathological complete response (Ground truth).The developed deep learning architecture was able to predict the responding breast tumors to chemotherapy treatment in the external validation dataset with an AUC of 0.93 using parallel learning MRI images acquired at different moments. The visual results showed that the most important extracted features from non-responding tumors are in the peripheral and external tumor regions. The model proposed in this study is more efficient compared to those proposed in the literature.Even with a limited training dataset size, the developed multi-input CNN model using DCE-MR images acquired before and following the first chemotherapy was able to predict responding and non-responding tumors with higher accuracy. Thanks to the visualization of the extracted characteristics by the DL model on the responding and non-responding tumors, the latter could be used henceforth in clinical analysis after its evaluation based on more extra data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
naturehome发布了新的文献求助10
1秒前
1秒前
大个应助数学小恶魔采纳,获得10
2秒前
2秒前
平安喜乐完成签到 ,获得积分10
4秒前
6秒前
6秒前
haibing发布了新的文献求助10
7秒前
7秒前
SciGPT应助kkk采纳,获得10
8秒前
是瓜瓜不完成签到,获得积分10
8秒前
果实兼泡泡完成签到,获得积分10
8秒前
文静灵阳发布了新的文献求助10
8秒前
不如一默发布了新的文献求助10
9秒前
9秒前
zhangjing完成签到,获得积分10
9秒前
10秒前
11秒前
领导范儿应助含蓄清炎采纳,获得10
11秒前
余健完成签到,获得积分10
12秒前
李健的小迷弟应助Bone采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
纪梵希发布了新的文献求助10
14秒前
华仔应助方可新采纳,获得10
14秒前
14秒前
科研通AI5应助naturehome采纳,获得10
15秒前
shiyin发布了新的文献求助10
17秒前
19秒前
19秒前
李爱国应助鱼0306采纳,获得10
19秒前
吉吉发布了新的文献求助10
19秒前
20秒前
迷你的迎南完成签到,获得积分10
20秒前
狒狒发布了新的文献求助10
20秒前
英俊的铭应助朵拉采纳,获得10
21秒前
田様应助LL采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542916
求助须知:如何正确求助?哪些是违规求助? 3120308
关于积分的说明 9342102
捐赠科研通 2818290
什么是DOI,文献DOI怎么找? 1549524
邀请新用户注册赠送积分活动 722160
科研通“疑难数据库(出版商)”最低求助积分说明 712978