清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A spatio-temporal sequence-to-sequence network for traffic flow prediction

计算机科学 循环神经网络 卷积(计算机科学) 卷积神经网络 编码器 节点(物理) 序列(生物学) 人工智能 算法 模式识别(心理学) 人工神经网络 结构工程 生物 工程类 遗传学 操作系统
作者
Shuqin Cao,Libing Wu,Jia Wu,Dan Wu,Qingan Li
出处
期刊:Information Sciences [Elsevier]
卷期号:610: 185-203 被引量:38
标识
DOI:10.1016/j.ins.2022.07.125
摘要

Spatio-temporal prediction has drawn much attention given its wide application, of which traffic flow prediction is a typical task. Within the vision of smart cities, traffic flow prediction plays a vital role in traffic control and optimization. The current approaches commonly use a graph convolutional network (GCN) to capture any spatial correlations and a recurrent neural network (RNN) to mine any temporal correlations. However, GCNs cannot detect spatial heterogeneity and time-varying spatial correlations, and RNNs cannot model the periodicity of traffic series data. Further, iterative training of RNNs may come at a high computational cost and result in problems with error propagation. To this end, we propose STSSN, a spatio-temporal sequence-to-sequence network, that not only explores heterogeneous and time-varying spatial correlations, but also efficiently exploits sequential and periodic temporal correlations. STSSN is based on an encoder-decoder framework. In the network, the model’s input is processed to extract the periodic daily and weekly patterns in traffic flows. Both the encoder and decoder mainly consist of an enhanced diffusion convolutional network (EDCN) and a temporal convolutional network (TCN). In the EDCN module, the diffusion convolution incorporates time-varying node representations so as to capture both node-specific patterns and time-varying spatial correlations. In the TCN module, we take full advantage of the parallel computing in the dilated causal convolution to mine local (short-term) temporal correlations. More importantly, global (long-term) temporal correlations are discovered through an encoder-decoder attention (EDA) module. This EDA mechanism directly models the relationship between the encoder and decoder to mitigate problems with error propagation. Experiments on two real-world datasets verify the superiority of STSSN, with STSSN’s MAE at between 3.85%-6.17% lower than the state-of-the-art baselines on the PEMS-BAY dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
4秒前
27秒前
51秒前
方白秋完成签到,获得积分10
51秒前
believe完成签到,获得积分10
53秒前
月儿完成签到 ,获得积分10
54秒前
青出于蓝蔡完成签到,获得积分10
59秒前
快乐半山发布了新的文献求助10
1分钟前
起风了完成签到 ,获得积分10
1分钟前
快乐半山完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
2分钟前
KIKIup发布了新的文献求助10
2分钟前
2分钟前
3分钟前
美好蜻蜓完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
李健的小迷弟应助炫白采纳,获得10
4分钟前
黑球发布了新的文献求助10
4分钟前
4分钟前
4分钟前
6分钟前
6分钟前
6分钟前
7分钟前
红油曲奇完成签到,获得积分10
7分钟前
8分钟前
颖宝老公完成签到,获得积分0
8分钟前
8分钟前
宝宝熊的熊宝宝完成签到,获得积分10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
小二郎应助科研通管家采纳,获得10
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
乔杰完成签到 ,获得积分10
10分钟前
10分钟前
cjy完成签到,获得积分10
10分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338996
求助须知:如何正确求助?哪些是违规求助? 2967044
关于积分的说明 8627866
捐赠科研通 2646460
什么是DOI,文献DOI怎么找? 1449226
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660162