A supervised approach for automated surface defect detection in ceramic tile quality control

瓦片 特征(语言学) 计算机视觉 陶瓷 特征提取 瓷砖 棱锥(几何) 人工智能 计算机科学 目标检测 瓶颈 模式识别(心理学) 材料科学 数学 复合材料 嵌入式系统 语言学 哲学 几何学
作者
Qinghua Lu,Junmeng Lin,Lufeng Luo,Yunzhi Zhang,Wenbo Zhu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:53: 101692-101692 被引量:60
标识
DOI:10.1016/j.aei.2022.101692
摘要

Surface defect detection is very important to guarantee the quality of ceramic tiles production. At present, this process is usually performed manually in the ceramic tile industry, which is low efficiency and time-consuming. For small surface defects detection of high-resolution ceramic tiles image, an intelligent detection method for surface defects of ceramic tiles based on an improved you only look once version 5 (YOLOv5) algorithm is presented. Firstly, the high-resolution ceramic tile images are cropped into slices, and the Bottleneck module in the YOLOv5s network is optimized by introducing depthwise convolution and replaced in the whole network. Then, feature extraction is performed using the improved Shufflenetv2 backbone, and an attention mechanism is added to the backbone network to improve the feature extraction ability. The path aggregation network (PAN) and Feature Pyramid Networks (FPN) neck are used to enhance the feature extraction, and finally, the YOLO head is used to identify and locate the ceramic tile defects. The multiple sliding windows detection method is proposed to detect the original ceramic tile image which is faster than the single sliding window detection method. The experimental results show that compared with the original YOLOv5s detection algorithm, the parameters of the model are reduced by 20.46 %, the floating point operations are reduced by 26.22 %, and the mean average precision (mAP) of the proposed method is 96.73 % in the ceramic tile image slice test set which has 1.93 % improvement in mAP than the original YOLOv5s. Compare with other object detection methods, the method proposed in this paper also has certain advantages. In the high-resolution ceramic tile images test set, the mAP of the proposed algorithm is 86.44 % by using the multiple sliding window detection method. The ceramic defect detection experiment has verified the feasibility of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大气的氧发布了新的文献求助10
刚刚
刚刚
djh完成签到,获得积分0
刚刚
英姑应助Lazyneko采纳,获得10
刚刚
苗条的善斓完成签到,获得积分10
刚刚
贪玩的跳跳糖完成签到,获得积分10
刚刚
爱撒娇的妙竹完成签到,获得积分10
2秒前
guanoo完成签到,获得积分10
2秒前
求是完成签到,获得积分20
2秒前
gyhmm完成签到,获得积分10
2秒前
刘勇完成签到,获得积分10
3秒前
3秒前
宝藏发布了新的文献求助10
3秒前
3秒前
落泺完成签到 ,获得积分10
3秒前
YBHTLLLL完成签到,获得积分10
4秒前
大个应助AN采纳,获得10
4秒前
槑槑发布了新的文献求助10
4秒前
4秒前
英俊的铭应助fairy采纳,获得30
4秒前
4秒前
zzrg发布了新的文献求助10
4秒前
Continue完成签到,获得积分10
4秒前
白踏歌发布了新的文献求助10
5秒前
殷晓阳发布了新的文献求助10
5秒前
5秒前
Owen应助静素雅格采纳,获得10
5秒前
5秒前
6秒前
6秒前
爆米花应助Edgar采纳,获得10
6秒前
6秒前
古猫宁发布了新的文献求助10
7秒前
7秒前
LovelyYy完成签到,获得积分10
7秒前
7秒前
初晴发布了新的文献求助10
7秒前
大帅发布了新的文献求助50
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848