亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A supervised approach for automated surface defect detection in ceramic tile quality control

瓦片 特征(语言学) 计算机视觉 陶瓷 特征提取 瓷砖 棱锥(几何) 人工智能 计算机科学 目标检测 瓶颈 模式识别(心理学) 材料科学 数学 复合材料 嵌入式系统 几何学 哲学 语言学
作者
Qinghua Lu,Junmeng Lin,Lufeng Luo,Yunzhi Zhang,Wenbo Zhu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:53: 101692-101692 被引量:35
标识
DOI:10.1016/j.aei.2022.101692
摘要

Surface defect detection is very important to guarantee the quality of ceramic tiles production. At present, this process is usually performed manually in the ceramic tile industry, which is low efficiency and time-consuming. For small surface defects detection of high-resolution ceramic tiles image, an intelligent detection method for surface defects of ceramic tiles based on an improved you only look once version 5 (YOLOv5) algorithm is presented. Firstly, the high-resolution ceramic tile images are cropped into slices, and the Bottleneck module in the YOLOv5s network is optimized by introducing depthwise convolution and replaced in the whole network. Then, feature extraction is performed using the improved Shufflenetv2 backbone, and an attention mechanism is added to the backbone network to improve the feature extraction ability. The path aggregation network (PAN) and Feature Pyramid Networks (FPN) neck are used to enhance the feature extraction, and finally, the YOLO head is used to identify and locate the ceramic tile defects. The multiple sliding windows detection method is proposed to detect the original ceramic tile image which is faster than the single sliding window detection method. The experimental results show that compared with the original YOLOv5s detection algorithm, the parameters of the model are reduced by 20.46 %, the floating point operations are reduced by 26.22 %, and the mean average precision (mAP) of the proposed method is 96.73 % in the ceramic tile image slice test set which has 1.93 % improvement in mAP than the original YOLOv5s. Compare with other object detection methods, the method proposed in this paper also has certain advantages. In the high-resolution ceramic tile images test set, the mAP of the proposed algorithm is 86.44 % by using the multiple sliding window detection method. The ceramic defect detection experiment has verified the feasibility of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凶狠的秀发完成签到,获得积分20
3秒前
张元东完成签到 ,获得积分10
31秒前
35秒前
41秒前
50秒前
bkagyin应助哈哈公子25采纳,获得10
51秒前
哈哈公子25完成签到,获得积分10
57秒前
胖大海完成签到 ,获得积分10
1分钟前
NexusExplorer应助Raunio采纳,获得10
1分钟前
ding应助Sarah采纳,获得10
1分钟前
老王家的二姑娘完成签到 ,获得积分10
1分钟前
Frank应助coco采纳,获得30
2分钟前
2分钟前
green发布了新的文献求助50
2分钟前
2分钟前
寒冷的亦凝完成签到,获得积分10
2分钟前
2分钟前
中西西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Sarah发布了新的文献求助10
2分钟前
小柠檬发布了新的文献求助10
2分钟前
Sarah完成签到,获得积分10
3分钟前
烟花应助小柠檬采纳,获得10
3分钟前
3分钟前
Raunio发布了新的文献求助10
3分钟前
Lucas应助寒冷的亦凝采纳,获得10
3分钟前
Dream完成签到,获得积分0
4分钟前
星流xx完成签到 ,获得积分10
4分钟前
Owen应助轻舟已过万重山采纳,获得10
4分钟前
4分钟前
Jasper应助大黄采纳,获得10
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
5分钟前
轻舟已过万重山完成签到,获得积分10
5分钟前
水晶泡泡发布了新的文献求助10
5分钟前
小洪俊熙完成签到,获得积分10
5分钟前
5分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805697
关于积分的说明 7865741
捐赠科研通 2463927
什么是DOI,文献DOI怎么找? 1311677
科研通“疑难数据库(出版商)”最低求助积分说明 629677
版权声明 601853