A supervised approach for automated surface defect detection in ceramic tile quality control

瓦片 特征(语言学) 计算机视觉 陶瓷 特征提取 瓷砖 棱锥(几何) 人工智能 计算机科学 目标检测 瓶颈 模式识别(心理学) 材料科学 数学 复合材料 嵌入式系统 语言学 哲学 几何学
作者
Qinghua Lu,Junmeng Lin,Lufeng Luo,Yunzhi Zhang,Wenbo Zhu
出处
期刊:Advanced Engineering Informatics [Elsevier]
卷期号:53: 101692-101692 被引量:60
标识
DOI:10.1016/j.aei.2022.101692
摘要

Surface defect detection is very important to guarantee the quality of ceramic tiles production. At present, this process is usually performed manually in the ceramic tile industry, which is low efficiency and time-consuming. For small surface defects detection of high-resolution ceramic tiles image, an intelligent detection method for surface defects of ceramic tiles based on an improved you only look once version 5 (YOLOv5) algorithm is presented. Firstly, the high-resolution ceramic tile images are cropped into slices, and the Bottleneck module in the YOLOv5s network is optimized by introducing depthwise convolution and replaced in the whole network. Then, feature extraction is performed using the improved Shufflenetv2 backbone, and an attention mechanism is added to the backbone network to improve the feature extraction ability. The path aggregation network (PAN) and Feature Pyramid Networks (FPN) neck are used to enhance the feature extraction, and finally, the YOLO head is used to identify and locate the ceramic tile defects. The multiple sliding windows detection method is proposed to detect the original ceramic tile image which is faster than the single sliding window detection method. The experimental results show that compared with the original YOLOv5s detection algorithm, the parameters of the model are reduced by 20.46 %, the floating point operations are reduced by 26.22 %, and the mean average precision (mAP) of the proposed method is 96.73 % in the ceramic tile image slice test set which has 1.93 % improvement in mAP than the original YOLOv5s. Compare with other object detection methods, the method proposed in this paper also has certain advantages. In the high-resolution ceramic tile images test set, the mAP of the proposed algorithm is 86.44 % by using the multiple sliding window detection method. The ceramic defect detection experiment has verified the feasibility of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助一一采纳,获得30
2秒前
zzzzzzz发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
嘿嘿发布了新的文献求助10
5秒前
隐形曼青应助老迟到的澜采纳,获得10
6秒前
6秒前
英俊的铭应助派123采纳,获得10
8秒前
完美世界应助一颗竹笋采纳,获得10
8秒前
FU完成签到,获得积分20
9秒前
10秒前
10秒前
韩浩男发布了新的文献求助10
10秒前
酷炫风华完成签到 ,获得积分10
12秒前
CodeCraft应助刻苦大门采纳,获得10
12秒前
13秒前
mumumu完成签到,获得积分10
13秒前
海岸完成签到,获得积分10
14秒前
一一发布了新的文献求助30
16秒前
绾绾完成签到 ,获得积分10
17秒前
007完成签到,获得积分10
18秒前
cindy完成签到 ,获得积分10
18秒前
wml应助Cyz采纳,获得10
19秒前
21秒前
斯文败类应助胡拉拉采纳,获得10
22秒前
Duke_ethan完成签到,获得积分10
23秒前
yang完成签到 ,获得积分10
23秒前
23秒前
23秒前
joe发布了新的文献求助10
24秒前
bkagyin应助xx采纳,获得10
24秒前
大个应助老干部采纳,获得10
25秒前
hymmm完成签到,获得积分10
25秒前
25秒前
27秒前
Return应助悄悄采纳,获得10
28秒前
梅雨季来信完成签到,获得积分10
28秒前
A晨发布了新的文献求助10
28秒前
yyyy发布了新的文献求助30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700