清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A supervised approach for automated surface defect detection in ceramic tile quality control

瓦片 特征(语言学) 计算机视觉 陶瓷 特征提取 瓷砖 棱锥(几何) 人工智能 计算机科学 目标检测 瓶颈 模式识别(心理学) 材料科学 数学 复合材料 嵌入式系统 语言学 哲学 几何学
作者
Qinghua Lu,Junmeng Lin,Lufeng Luo,Yunzhi Zhang,Wenbo Zhu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101692-101692 被引量:35
标识
DOI:10.1016/j.aei.2022.101692
摘要

Surface defect detection is very important to guarantee the quality of ceramic tiles production. At present, this process is usually performed manually in the ceramic tile industry, which is low efficiency and time-consuming. For small surface defects detection of high-resolution ceramic tiles image, an intelligent detection method for surface defects of ceramic tiles based on an improved you only look once version 5 (YOLOv5) algorithm is presented. Firstly, the high-resolution ceramic tile images are cropped into slices, and the Bottleneck module in the YOLOv5s network is optimized by introducing depthwise convolution and replaced in the whole network. Then, feature extraction is performed using the improved Shufflenetv2 backbone, and an attention mechanism is added to the backbone network to improve the feature extraction ability. The path aggregation network (PAN) and Feature Pyramid Networks (FPN) neck are used to enhance the feature extraction, and finally, the YOLO head is used to identify and locate the ceramic tile defects. The multiple sliding windows detection method is proposed to detect the original ceramic tile image which is faster than the single sliding window detection method. The experimental results show that compared with the original YOLOv5s detection algorithm, the parameters of the model are reduced by 20.46 %, the floating point operations are reduced by 26.22 %, and the mean average precision (mAP) of the proposed method is 96.73 % in the ceramic tile image slice test set which has 1.93 % improvement in mAP than the original YOLOv5s. Compare with other object detection methods, the method proposed in this paper also has certain advantages. In the high-resolution ceramic tile images test set, the mAP of the proposed algorithm is 86.44 % by using the multiple sliding window detection method. The ceramic defect detection experiment has verified the feasibility of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
矢思然完成签到,获得积分10
7秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
2分钟前
小花匠发布了新的文献求助50
2分钟前
呃呃呃呃呃完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
紫熊发布了新的文献求助10
4分钟前
张同学快去做实验呀完成签到,获得积分10
4分钟前
4分钟前
紫熊发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
Dreamhappy完成签到,获得积分10
5分钟前
George完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
老石完成签到 ,获得积分10
6分钟前
6分钟前
宇文非笑完成签到 ,获得积分10
6分钟前
6分钟前
着急的松发布了新的文献求助10
6分钟前
着急的松完成签到,获得积分10
7分钟前
7分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
8分钟前
深情安青应助科研通管家采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
beastieboy完成签到,获得积分20
9分钟前
量子星尘发布了新的文献求助10
9分钟前
9分钟前
cym发布了新的文献求助10
9分钟前
彭于晏应助Xuancheng_SINH采纳,获得10
9分钟前
li给li的求助进行了留言
9分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008393
求助须知:如何正确求助?哪些是违规求助? 3548117
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810258
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209