A supervised approach for automated surface defect detection in ceramic tile quality control

瓦片 特征(语言学) 计算机视觉 陶瓷 特征提取 瓷砖 棱锥(几何) 人工智能 计算机科学 目标检测 瓶颈 模式识别(心理学) 材料科学 数学 复合材料 嵌入式系统 几何学 哲学 语言学
作者
Qinghua Lu,Junmeng Lin,Lufeng Luo,Yunzhi Zhang,Wenbo Zhu
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:53: 101692-101692 被引量:35
标识
DOI:10.1016/j.aei.2022.101692
摘要

Surface defect detection is very important to guarantee the quality of ceramic tiles production. At present, this process is usually performed manually in the ceramic tile industry, which is low efficiency and time-consuming. For small surface defects detection of high-resolution ceramic tiles image, an intelligent detection method for surface defects of ceramic tiles based on an improved you only look once version 5 (YOLOv5) algorithm is presented. Firstly, the high-resolution ceramic tile images are cropped into slices, and the Bottleneck module in the YOLOv5s network is optimized by introducing depthwise convolution and replaced in the whole network. Then, feature extraction is performed using the improved Shufflenetv2 backbone, and an attention mechanism is added to the backbone network to improve the feature extraction ability. The path aggregation network (PAN) and Feature Pyramid Networks (FPN) neck are used to enhance the feature extraction, and finally, the YOLO head is used to identify and locate the ceramic tile defects. The multiple sliding windows detection method is proposed to detect the original ceramic tile image which is faster than the single sliding window detection method. The experimental results show that compared with the original YOLOv5s detection algorithm, the parameters of the model are reduced by 20.46 %, the floating point operations are reduced by 26.22 %, and the mean average precision (mAP) of the proposed method is 96.73 % in the ceramic tile image slice test set which has 1.93 % improvement in mAP than the original YOLOv5s. Compare with other object detection methods, the method proposed in this paper also has certain advantages. In the high-resolution ceramic tile images test set, the mAP of the proposed algorithm is 86.44 % by using the multiple sliding window detection method. The ceramic defect detection experiment has verified the feasibility of the method proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助qxz采纳,获得10
刚刚
灵巧的导师完成签到,获得积分10
1秒前
1秒前
1秒前
lisa发布了新的文献求助10
2秒前
求解限发布了新的文献求助200
2秒前
传奇3应助笑点低的日记本采纳,获得10
2秒前
星河梦枕完成签到,获得积分10
3秒前
3秒前
胡萝卜应助嘎嘎的鸡神采纳,获得20
3秒前
旺仔牛奶完成签到,获得积分10
3秒前
DARKNESS完成签到,获得积分10
4秒前
smkzw完成签到,获得积分10
4秒前
果果关注了科研通微信公众号
4秒前
4秒前
天真的邴完成签到 ,获得积分10
4秒前
wzz完成签到,获得积分10
4秒前
学霸扬发布了新的文献求助10
4秒前
慧慧子发布了新的文献求助10
4秒前
CC发布了新的文献求助10
4秒前
高高菠萝完成签到 ,获得积分10
5秒前
柠檬不萌发布了新的文献求助10
5秒前
小菠发布了新的文献求助10
5秒前
ZZ完成签到,获得积分10
5秒前
6秒前
Mistekary发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
娜娜子完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
故意的盼望完成签到,获得积分10
9秒前
李健应助科研小辣鸡采纳,获得10
9秒前
Owen应助祈愿采纳,获得10
9秒前
刺猬完成签到,获得积分10
9秒前
jjjakdie发布了新的文献求助10
10秒前
清宁完成签到,获得积分10
10秒前
大白包子李完成签到,获得积分10
10秒前
tigger完成签到 ,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661730
求助须知:如何正确求助?哪些是违规求助? 3222651
关于积分的说明 9747363
捐赠科研通 2932348
什么是DOI,文献DOI怎么找? 1605615
邀请新用户注册赠送积分活动 757986
科研通“疑难数据库(出版商)”最低求助积分说明 734636