已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Estimating Treatment-Switching Bias in a Randomized Clinical Trial of Ovarian Cancer Treatment: Combining Causal Inference with Decision-Analytic Modeling

贝伐单抗 随机对照试验 医学 临床试验 反事实思维 肿瘤科 卵巢癌 生存分析 稳健性(进化) 因果推理 统计 内科学 计量经济学 癌症 心理学 化疗 数学 社会心理学 生物化学 化学 基因 病理
作者
Felicitas Kuehne,Ursula Rochau,Noman Paracha,Jennifer M. Yeh,E Sabaté,Uwe Siebert
出处
期刊:Medical Decision Making [SAGE]
卷期号:42 (2): 194-207
标识
DOI:10.1177/0272989x211026288
摘要

Bevacizumab is efficacious in delaying ovarian cancer progression and controlling ascites. The ICON7 trial showed a significant benefit in overall survival for bevacizumab, whereas the GOG-218 trial did not. GOG-218 allowed control group patients to switch to bevacizumab upon progression, which may have biased the results. Lack of data on switching behavior prevented the application of g-methods to adjust for switching. The objective of this study was to apply decision-analytic modeling to estimate the impact of switching bias on causal treatment-effect estimates.We developed a causal decision-analytic Markov model (CDAMM) to emulate the GOG-218 trial and estimate overall survival. CDAMM input parameters were based on data from randomized clinical trials and the published literature. Overall switching proportion was based on GOG-218 trial information, whereas the proportion switching with and without ascites was estimated using calibration. We estimated the counterfactual treatment effect that would have been observed had no switching occurred by denying switching in the CDAMM.The survival curves generated by the CDAMM matched well with the ones reported in the GOG-218 trial. The survival curve correcting for switching showed an estimated bias such that 79% of the true treatment effect could not be observed in the GOG-218 trial. Results were most sensitive to changes in the proportion progressing with severe ascites and mortality.We used a simplified model structure and based model parameters on published data and assumptions. Robustness of the CDAMM was tested and model assumptions transparently reported.Medical-decision science methods may be merged with empirical methods of causal inference to integrate data from other sources where empirical data are not sufficient. We recommend collecting sufficient information on switching behavior when switching cannot be avoided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
俭朴夜雪完成签到,获得积分10
3秒前
神外第一刀完成签到 ,获得积分10
5秒前
wei完成签到,获得积分10
7秒前
kk完成签到 ,获得积分10
7秒前
lakelili发布了新的文献求助10
7秒前
xyyyy完成签到 ,获得积分10
8秒前
陈玉婷完成签到,获得积分20
9秒前
慕青应助呃呃呃采纳,获得10
12秒前
背后的汲完成签到,获得积分10
14秒前
yulian完成签到,获得积分10
16秒前
LYL完成签到,获得积分10
18秒前
彩色德天完成签到 ,获得积分10
19秒前
六碗鱼完成签到 ,获得积分10
20秒前
xx完成签到 ,获得积分10
21秒前
天天快乐应助二橦采纳,获得10
21秒前
deswin完成签到 ,获得积分10
21秒前
23秒前
23秒前
冰生关注了科研通微信公众号
23秒前
阿鑫完成签到 ,获得积分10
26秒前
26秒前
Kashing完成签到,获得积分10
27秒前
29秒前
刻苦觅风完成签到,获得积分10
29秒前
冷静的莞完成签到 ,获得积分0
30秒前
在水一方应助df采纳,获得10
30秒前
lakelili完成签到,获得积分10
30秒前
想不出来发布了新的文献求助10
30秒前
顾矜应助Murphy采纳,获得10
32秒前
32秒前
呃呃呃发布了新的文献求助10
34秒前
惑感完成签到,获得积分10
34秒前
奋斗哈基米完成签到 ,获得积分10
34秒前
天天快乐应助牧青采纳,获得10
41秒前
41秒前
41秒前
42秒前
美好的仰完成签到,获得积分10
43秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422795
求助须知:如何正确求助?哪些是违规求助? 3023130
关于积分的说明 8903543
捐赠科研通 2710509
什么是DOI,文献DOI怎么找? 1486531
科研通“疑难数据库(出版商)”最低求助积分说明 687093
邀请新用户注册赠送积分活动 682312