Combination of continuous wavelet transform and genetic algorithm-based Otsu for efficient mass spectrometry peak detection

小波 模式识别(心理学) 人工智能 分割 小波变换 数学 大津法 离散小波变换 算法 图像分割 计算机科学
作者
Junfei Zhou,Junhui Li,Wenqing Gao,Shun Zhang,Chenlu Wang,Jing Lin,Sijia Zhang,Jiancheng Yu,Keqi Tang
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:624: 75-80 被引量:9
标识
DOI:10.1016/j.bbrc.2022.07.083
摘要

Mass spectrometry (MS) data is susceptible to random noises and alternating baseline, posing great challenges to spectral peak detection, especially for weak peaks and overlapping peaks. Herein, an efficient peak detection algorithm combining continuous wavelet transform (CWT) and genetic algorithm-based threshold segmentation (denoted as WSTGA) for mass spectrometry was proposed. Firstly, Mexican Hat wavelet was selected as the mother wavelet by comparing the matching degree between the difference of Gaussian (DOG) and different wavelets. Subsequently, the ridges and valleys were identified from 2D wavelet coefficient matrix. Afterward, an improved threshold segmentation method, Otsu method based on genetic algorithm, was introduced to find optimal segmentation threshold and achieve better image segmentation, overcoming the deficiency of traditional Otsu method that cannot handle long-tailed unimodal histograms. Finally, the characteristic peaks were successfully identified by utilizing the ridge-valley lines in wavelet space and original spectrum. Receiver operating characteristic (ROC) curve, area under curve (AUC) and F₁ measure are used as criterions to evaluate performance of peak detection algorithms. Compared with multi-scale peak detection (MSPD) and CWT and image segmentation (CWT-IS) methods, all the results showed that WSTGA can achieve better peak detection. More importantly, the experimental results from MALDI-TOF spectra demonstrated that WSTGA can effectively detect more weak peaks and overlapping peaks while maintaining a lower false peak detection rate than MSPD and CWT-IS methods, indicating its great advantages in characteristic peak identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
仚屳完成签到,获得积分10
刚刚
Naixi完成签到,获得积分10
刚刚
今后应助HU采纳,获得10
刚刚
su完成签到 ,获得积分10
2秒前
平淡的依白完成签到,获得积分20
2秒前
xinchengzhu关注了科研通微信公众号
2秒前
爱静静应助tao采纳,获得10
3秒前
iNk应助Rebekah采纳,获得10
3秒前
HopeStar完成签到,获得积分10
4秒前
树叶有专攻完成签到,获得积分10
4秒前
4秒前
田様应助Mia采纳,获得20
4秒前
所所应助吃点红糖馒头采纳,获得10
4秒前
今后应助PSCs采纳,获得10
4秒前
5秒前
duguqiubai4发布了新的文献求助10
5秒前
独特的沛凝完成签到,获得积分10
7秒前
思源应助淇淇怪怪采纳,获得10
7秒前
领导范儿应助徐慕源采纳,获得10
7秒前
听粥完成签到,获得积分10
8秒前
高高迎蓉完成签到,获得积分10
8秒前
豆花完成签到,获得积分10
8秒前
SYLH应助风趣的无剑采纳,获得10
8秒前
悲伤水凝胶完成签到,获得积分10
8秒前
鲸鱼完成签到,获得积分10
10秒前
huangqinxue完成签到,获得积分10
10秒前
11秒前
11秒前
Tina完成签到,获得积分10
11秒前
电催化皮皮完成签到,获得积分10
11秒前
大模型应助阿蒙采纳,获得10
12秒前
duguqiubai4完成签到,获得积分10
12秒前
13秒前
meta完成签到,获得积分10
13秒前
大饼完成签到,获得积分10
14秒前
爆米花应助WJM采纳,获得10
14秒前
xiexuqin完成签到,获得积分10
14秒前
14秒前
silentJeremy发布了新的文献求助200
15秒前
JonyiCheng完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678