Combination of continuous wavelet transform and genetic algorithm-based Otsu for efficient mass spectrometry peak detection

小波 模式识别(心理学) 人工智能 分割 小波变换 数学 大津法 离散小波变换 算法 图像分割 计算机科学
作者
Junfei Zhou,Junhui Li,Wenqing Gao,Shun Zhang,Chenlu Wang,Jing Lin,Sijia Zhang,Jiancheng Yu,Keqi Tang
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier]
卷期号:624: 75-80 被引量:9
标识
DOI:10.1016/j.bbrc.2022.07.083
摘要

Mass spectrometry (MS) data is susceptible to random noises and alternating baseline, posing great challenges to spectral peak detection, especially for weak peaks and overlapping peaks. Herein, an efficient peak detection algorithm combining continuous wavelet transform (CWT) and genetic algorithm-based threshold segmentation (denoted as WSTGA) for mass spectrometry was proposed. Firstly, Mexican Hat wavelet was selected as the mother wavelet by comparing the matching degree between the difference of Gaussian (DOG) and different wavelets. Subsequently, the ridges and valleys were identified from 2D wavelet coefficient matrix. Afterward, an improved threshold segmentation method, Otsu method based on genetic algorithm, was introduced to find optimal segmentation threshold and achieve better image segmentation, overcoming the deficiency of traditional Otsu method that cannot handle long-tailed unimodal histograms. Finally, the characteristic peaks were successfully identified by utilizing the ridge-valley lines in wavelet space and original spectrum. Receiver operating characteristic (ROC) curve, area under curve (AUC) and F₁ measure are used as criterions to evaluate performance of peak detection algorithms. Compared with multi-scale peak detection (MSPD) and CWT and image segmentation (CWT-IS) methods, all the results showed that WSTGA can achieve better peak detection. More importantly, the experimental results from MALDI-TOF spectra demonstrated that WSTGA can effectively detect more weak peaks and overlapping peaks while maintaining a lower false peak detection rate than MSPD and CWT-IS methods, indicating its great advantages in characteristic peak identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥的卷心菜完成签到,获得积分10
刚刚
ztt发布了新的文献求助10
1秒前
那就来吧完成签到,获得积分10
4秒前
4秒前
JamesPei应助彪壮的未来采纳,获得10
5秒前
晨曦完成签到,获得积分10
5秒前
8秒前
徐矜完成签到,获得积分10
9秒前
煮饭吃Zz发布了新的文献求助10
9秒前
9秒前
CipherSage应助晨曦采纳,获得10
10秒前
艺术家脾气完成签到,获得积分10
12秒前
岁月流年完成签到,获得积分10
13秒前
13秒前
14秒前
lyx发布了新的文献求助10
16秒前
慢慢完成签到,获得积分10
18秒前
领导范儿应助zhizhizhi采纳,获得10
18秒前
一一发布了新的文献求助10
18秒前
隐形曼青应助naplzp采纳,获得10
19秒前
JJJ完成签到,获得积分10
20秒前
擦书完成签到,获得积分10
20秒前
Keep发布了新的文献求助10
21秒前
星辰大海应助益达采纳,获得10
24秒前
25秒前
哒哒发布了新的文献求助10
26秒前
27秒前
隐形问萍发布了新的文献求助10
28秒前
29秒前
29秒前
31秒前
naplzp发布了新的文献求助10
31秒前
31秒前
zhizhizhi发布了新的文献求助10
33秒前
毒蝎King应助科研通管家采纳,获得20
34秒前
乐乐应助科研通管家采纳,获得10
34秒前
深情安青应助科研通管家采纳,获得10
34秒前
星辰大海应助科研通管家采纳,获得10
34秒前
脑洞疼应助科研通管家采纳,获得10
34秒前
浪漫得要死完成签到,获得积分20
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159827
求助须知:如何正确求助?哪些是违规求助? 2810777
关于积分的说明 7889328
捐赠科研通 2469852
什么是DOI,文献DOI怎么找? 1315126
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012