Transformer-based unsupervised contrastive learning for histopathological image classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 特征学习 深度学习 特征(语言学) 分割 机器学习 语言学 哲学
作者
Xiyue Wang,Sen Yang,Jun Zhang,Minghui Wang,Jing Zhang,Wei Yang,Junzhou Huang,Xiao Han
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:81: 102559-102559 被引量:273
标识
DOI:10.1016/j.media.2022.102559
摘要

A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhixia完成签到,获得积分20
刚刚
畅快的寄松完成签到,获得积分10
刚刚
在水一方应助张医生采纳,获得10
刚刚
刚刚
雪莉酒完成签到,获得积分10
刚刚
顾矜应助wst1988采纳,获得10
1秒前
酷炫的飞薇完成签到,获得积分10
1秒前
客官们帮帮忙完成签到,获得积分10
1秒前
迅速向日葵应助龙舞星采纳,获得10
1秒前
1秒前
3秒前
南宫映榕完成签到,获得积分10
3秒前
peiqi佩奇完成签到,获得积分10
3秒前
FashionBoy应助3131879775采纳,获得10
3秒前
龙虾发票完成签到,获得积分10
3秒前
zty完成签到,获得积分10
3秒前
4秒前
ZZZ完成签到,获得积分10
4秒前
科研老白完成签到,获得积分10
4秒前
4秒前
Focus完成签到,获得积分20
4秒前
孟严青完成签到,获得积分0
5秒前
量子星尘发布了新的文献求助10
5秒前
合适台灯发布了新的文献求助30
5秒前
6秒前
杨幂发布了新的文献求助10
6秒前
XT666完成签到,获得积分10
6秒前
学术混子完成签到,获得积分10
6秒前
AA完成签到,获得积分10
6秒前
灵巧代柔完成签到,获得积分10
7秒前
糖豆豆吃豆豆完成签到,获得积分10
7秒前
无辜竺完成签到 ,获得积分10
8秒前
9秒前
xiongyuan完成签到,获得积分10
9秒前
司徒不正发布了新的文献求助30
10秒前
追寻的访烟完成签到,获得积分10
10秒前
xiuwen发布了新的文献求助10
11秒前
11秒前
学术混子发布了新的文献求助10
11秒前
无聊的老姆完成签到 ,获得积分10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479