Transformer-based unsupervised contrastive learning for histopathological image classification

计算机科学 人工智能 卷积神经网络 模式识别(心理学) 特征学习 深度学习 特征(语言学) 分割 机器学习 语言学 哲学
作者
Xiyue Wang,Sen Yang,Jun Zhang,Minghui Wang,Jing Zhang,Wei Yang,Junzhou Huang,Xiao Han
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:81: 102559-102559 被引量:207
标识
DOI:10.1016/j.media.2022.102559
摘要

A large-scale and well-annotated dataset is a key factor for the success of deep learning in medical image analysis. However, assembling such large annotations is very challenging, especially for histopathological images with unique characteristics (e.g., gigapixel image size, multiple cancer types, and wide staining variations). To alleviate this issue, self-supervised learning (SSL) could be a promising solution that relies only on unlabeled data to generate informative representations and generalizes well to various downstream tasks even with limited annotations. In this work, we propose a novel SSL strategy called semantically-relevant contrastive learning (SRCL), which compares relevance between instances to mine more positive pairs. Compared to the two views from an instance in traditional contrastive learning, our SRCL aligns multiple positive instances with similar visual concepts, which increases the diversity of positives and then results in more informative representations. We employ a hybrid model (CTransPath) as the backbone, which is designed by integrating a convolutional neural network (CNN) and a multi-scale Swin Transformer architecture. The CTransPath is pretrained on massively unlabeled histopathological images that could serve as a collaborative local-global feature extractor to learn universal feature representations more suitable for tasks in the histopathology image domain. The effectiveness of our SRCL-pretrained CTransPath is investigated on five types of downstream tasks (patch retrieval, patch classification, weakly-supervised whole-slide image classification, mitosis detection, and colorectal adenocarcinoma gland segmentation), covering nine public datasets. The results show that our SRCL-based visual representations not only achieve state-of-the-art performance in each dataset, but are also more robust and transferable than other SSL methods and ImageNet pretraining (both supervised and self-supervised methods). Our code and pretrained model are available at https://github.com/Xiyue-Wang/TransPath.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助淡然的寻冬采纳,获得10
刚刚
希望天下0贩的0应助热木采纳,获得10
刚刚
溪鱼应助金子采纳,获得10
1秒前
YOKO完成签到,获得积分10
1秒前
gz完成签到,获得积分10
1秒前
1秒前
科研通AI2S应助Changlu采纳,获得30
1秒前
1秒前
2秒前
话梅糖糖发布了新的文献求助10
3秒前
3秒前
夜斗发布了新的文献求助10
3秒前
3秒前
开心绿柳发布了新的文献求助10
3秒前
科研通AI2S应助lolo采纳,获得10
4秒前
爆米花应助吐车上500采纳,获得10
5秒前
依依发布了新的文献求助10
5秒前
阿卡宁发布了新的文献求助30
5秒前
5秒前
呓语发布了新的文献求助10
5秒前
ding应助辛普森采纳,获得10
6秒前
poppy关注了科研通微信公众号
6秒前
6秒前
6秒前
lewis17发布了新的文献求助30
6秒前
7秒前
英俊的铭应助Michelle采纳,获得10
8秒前
8秒前
烟花应助宋致力采纳,获得10
8秒前
8秒前
cloud完成签到,获得积分10
8秒前
顾矜应助岂巳采纳,获得30
9秒前
xuanqing完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
ATYS完成签到,获得积分10
11秒前
言不得语发布了新的文献求助10
11秒前
852应助奋斗洋葱采纳,获得10
11秒前
小刘小刘发布了新的文献求助10
12秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419