Optimal Feature Selection for Diagnosing Diabetic Retinopathy Using FireFly Migration Operator-Based Monarch Butterfly Optimization

人工智能 计算机科学 模式识别(心理学) 特征选择 特征提取 自适应直方图均衡化 阈值 分割 卷积神经网络 直方图 直方图均衡化 图像(数学)
作者
S. Shafiulla Basha,K. Venkata Ramanaiah
出处
期刊:Critical Reviews in Biomedical Engineering [Begell House]
卷期号:50 (2): 21-37 被引量:5
标识
DOI:10.1615/critrevbiomedeng.2022041571
摘要

In recent years, diabetic retinopathy (DR) needs to be focused with the intention of developing accurate and effective approaches by accomplishing the existing challenges in the traditional models. With this objective, this paper aims to introduce an effective diagnosis system by utilizing retinal fundus images. The implementation of this diagnosis model incorporates 4 stages like (i) preprocessing, (ii) blood vessel segmentation, (iii) feature extraction, as well as (iv) classification. Originally, the median filter as well as contrast limited adaptive histogram equalization (CLAHE) help to preprocess the image. Moreover, the Fuzzy C Mean (FCM) thresholding is applied for blood vessel segmentation, which generates stochastic clustering of pixels to obtain enhanced threshold values. Further, feature extraction is accomplished by utilizing gray-level run-length matrix (GLRM), local, and morphological transformation-based features. Furthermore, a deep learning (DL) model known as convolutional neural network (CNN) is employed for the diagnosis or classification purpose. As a main novelty, this paper introduces an optimal feature selection as well as classification model. Further, the feature selection is done optimally by FireFly Migration Operator-based Monarch Butterfly Optimization (FM-MBO) which hybridized of the monarch butterfly optimization (MBO) and fire fly (FF) algorithms as the entire adopted extracted features attain higher feature length. Moreover, the proposed FM-MBO algorithm helps for optimizing the count of CNN's convolutional neurons to further improve the performance accuracy. At the end, the enhanced outcomes of the adopted diagnostic scheme are validated via a valuable comparative examination in terms of significant performance measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风中忆枫完成签到,获得积分10
刚刚
科研通AI5应助沉默的阁采纳,获得10
刚刚
东邪西毒加任我行完成签到,获得积分10
刚刚
hhh完成签到,获得积分10
1秒前
股份回购发布了新的文献求助10
2秒前
超级蘑菇完成签到 ,获得积分10
3秒前
797571完成签到,获得积分10
3秒前
从这完成签到,获得积分10
3秒前
精明的芷荷完成签到,获得积分10
4秒前
4秒前
清雨桩完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助30
5秒前
田様应助qin希望采纳,获得10
5秒前
温暖芷文完成签到,获得积分10
6秒前
沉静冬易完成签到,获得积分10
6秒前
搞怪柔完成签到,获得积分10
6秒前
zplease完成签到,获得积分10
6秒前
芝麻汤圆完成签到,获得积分10
6秒前
满意尔安完成签到,获得积分0
8秒前
Goodenough完成签到 ,获得积分10
8秒前
小柒完成签到,获得积分10
8秒前
小children丙完成签到,获得积分10
9秒前
ban完成签到,获得积分10
9秒前
股份回购完成签到,获得积分20
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
晶晶完成签到,获得积分10
11秒前
DCC完成签到,获得积分10
11秒前
豆豆小baby完成签到,获得积分10
11秒前
life完成签到,获得积分10
12秒前
bjr完成签到 ,获得积分10
12秒前
Accepted完成签到,获得积分10
12秒前
13秒前
rengar完成签到,获得积分10
13秒前
包子牛奶完成签到,获得积分10
13秒前
杨xy完成签到,获得积分10
13秒前
POWER完成签到,获得积分10
14秒前
可乐全糖微冰完成签到,获得积分10
14秒前
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666543
求助须知:如何正确求助?哪些是违规求助? 3225581
关于积分的说明 9763593
捐赠科研通 2935426
什么是DOI,文献DOI怎么找? 1607675
邀请新用户注册赠送积分活动 759302
科研通“疑难数据库(出版商)”最低求助积分说明 735214