Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics

计算机科学 洗钱 数字加密货币 数据库事务 图形 众包 复制 金融交易 计算机安全 数据挖掘 理论计算机科学 财务 万维网 业务 数据库 政治学 法学
作者
Mark Weber,Giacomo Domeniconi,Jie Chen,Daniel Karl I. Weidele,C. Bellei,Thompson Robinson,Charles E. Leiserson
出处
期刊:Cornell University - arXiv 被引量:106
标识
DOI:10.48550/arxiv.1908.02591
摘要

Anti-money laundering (AML) regulations play a critical role in safeguarding financial systems, but bear high costs for institutions and drive financial exclusion for those on the socioeconomic and international margins. The advent of cryptocurrency has introduced an intriguing paradox: pseudonymity allows criminals to hide in plain sight, but open data gives more power to investigators and enables the crowdsourcing of forensic analysis. Meanwhile advances in learning algorithms show great promise for the AML toolkit. In this workshop tutorial, we motivate the opportunity to reconcile the cause of safety with that of financial inclusion. We contribute the Elliptic Data Set, a time series graph of over 200K Bitcoin transactions (nodes), 234K directed payment flows (edges), and 166 node features, including ones based on non-public data; to our knowledge, this is the largest labelled transaction data set publicly available in any cryptocurrency. We share results from a binary classification task predicting illicit transactions using variations of Logistic Regression (LR), Random Forest (RF), Multilayer Perceptrons (MLP), and Graph Convolutional Networks (GCN), with GCN being of special interest as an emergent new method for capturing relational information. The results show the superiority of Random Forest (RF), but also invite algorithmic work to combine the respective powers of RF and graph methods. Lastly, we consider visualization for analysis and explainability, which is difficult given the size and dynamism of real-world transaction graphs, and we offer a simple prototype capable of navigating the graph and observing model performance on illicit activity over time. With this tutorial and data set, we hope to a) invite feedback in support of our ongoing inquiry, and b) inspire others to work on this societally important challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助fanrongfeng采纳,获得10
刚刚
Equby完成签到,获得积分10
1秒前
1秒前
大模型应助刘十三采纳,获得10
2秒前
zhangyuheng发布了新的文献求助30
2秒前
3秒前
mxy完成签到,获得积分20
3秒前
小二郎应助小陈要发一区采纳,获得10
4秒前
cs发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
铅笔菌发布了新的文献求助10
6秒前
7秒前
新小pi应助踏实的幻珊采纳,获得10
7秒前
蔷薇完成签到,获得积分10
7秒前
香蕉觅云应助里里采纳,获得10
8秒前
bible完成签到,获得积分10
8秒前
YQ发布了新的文献求助10
8秒前
8秒前
霸气向秋发布了新的文献求助10
10秒前
congguitar完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
leozhao发布了新的文献求助10
14秒前
大锤应助复杂千雁采纳,获得10
15秒前
橙子发布了新的文献求助10
15秒前
风中的夕阳完成签到,获得积分10
16秒前
光亮的灭绝完成签到 ,获得积分10
16秒前
50257055发布了新的文献求助10
16秒前
朱朱发布了新的文献求助10
17秒前
斯文败类应助暮凝采纳,获得20
17秒前
糊涂的松慈完成签到,获得积分10
18秒前
wujun发布了新的文献求助10
18秒前
爱喝酸奶的天真完成签到,获得积分10
20秒前
专注完成签到,获得积分10
21秒前
赘婿应助YQ采纳,获得10
23秒前
研友_VZG7GZ应助鑫叶采纳,获得10
24秒前
JamesPei应助端庄的香薇采纳,获得10
25秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053