Anti-Money Laundering in Bitcoin: Experimenting with Graph Convolutional Networks for Financial Forensics

计算机科学 洗钱 数字加密货币 数据库事务 图形 众包 复制 金融交易 计算机安全 数据挖掘 理论计算机科学 财务 万维网 业务 数据库 法学 政治学
作者
Mark Weber,Giacomo Domeniconi,Jie Chen,Daniel Karl I. Weidele,C. Bellei,Thompson Robinson,Charles E. Leiserson
出处
期刊:Cornell University - arXiv 被引量:106
标识
DOI:10.48550/arxiv.1908.02591
摘要

Anti-money laundering (AML) regulations play a critical role in safeguarding financial systems, but bear high costs for institutions and drive financial exclusion for those on the socioeconomic and international margins. The advent of cryptocurrency has introduced an intriguing paradox: pseudonymity allows criminals to hide in plain sight, but open data gives more power to investigators and enables the crowdsourcing of forensic analysis. Meanwhile advances in learning algorithms show great promise for the AML toolkit. In this workshop tutorial, we motivate the opportunity to reconcile the cause of safety with that of financial inclusion. We contribute the Elliptic Data Set, a time series graph of over 200K Bitcoin transactions (nodes), 234K directed payment flows (edges), and 166 node features, including ones based on non-public data; to our knowledge, this is the largest labelled transaction data set publicly available in any cryptocurrency. We share results from a binary classification task predicting illicit transactions using variations of Logistic Regression (LR), Random Forest (RF), Multilayer Perceptrons (MLP), and Graph Convolutional Networks (GCN), with GCN being of special interest as an emergent new method for capturing relational information. The results show the superiority of Random Forest (RF), but also invite algorithmic work to combine the respective powers of RF and graph methods. Lastly, we consider visualization for analysis and explainability, which is difficult given the size and dynamism of real-world transaction graphs, and we offer a simple prototype capable of navigating the graph and observing model performance on illicit activity over time. With this tutorial and data set, we hope to a) invite feedback in support of our ongoing inquiry, and b) inspire others to work on this societally important challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助WZ0904采纳,获得10
刚刚
xiongdi521完成签到,获得积分10
1秒前
1秒前
ding应助奋斗的小林采纳,获得10
1秒前
超帅曼柔完成签到,获得积分10
1秒前
酷波er应助xg采纳,获得10
2秒前
听话的亦瑶完成签到,获得积分10
3秒前
龙江游侠完成签到,获得积分10
3秒前
小蘑菇应助honeybee采纳,获得10
4秒前
Agernon应助超帅曼柔采纳,获得10
4秒前
5秒前
jella完成签到,获得积分10
6秒前
一网小海蜇完成签到 ,获得积分10
6秒前
9秒前
9秒前
Langsam完成签到,获得积分10
10秒前
JamesPei应助嘻嘻采纳,获得10
10秒前
mo72090完成签到,获得积分10
10秒前
poison完成签到 ,获得积分10
11秒前
俏皮半烟发布了新的文献求助10
11秒前
机灵的鸣凤完成签到 ,获得积分10
12秒前
王wangWANG完成签到,获得积分10
12秒前
freemoe完成签到,获得积分20
12秒前
WJ完成签到,获得积分10
13秒前
李健应助侦察兵采纳,获得10
14秒前
无花果应助子川采纳,获得10
15秒前
15秒前
爆米花应助龙歪歪采纳,获得10
17秒前
18秒前
18秒前
xxxqqq完成签到,获得积分10
19秒前
虚拟的觅山完成签到,获得积分10
20秒前
slj完成签到,获得积分10
21秒前
科研爱好者完成签到 ,获得积分10
21秒前
22秒前
ywang发布了新的文献求助10
23秒前
koial完成签到 ,获得积分10
24秒前
苏卿应助小xy采纳,获得10
24秒前
侦察兵发布了新的文献求助10
26秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849