流出物
污水处理
废水
抗生素耐药性
环境科学
抗生素
生物
环境工程
微生物学
作者
Ying Wang,Yunping Han,Li Lin,Junxin Liu,Yan Xu
标识
DOI:10.1016/j.envpol.2022.119870
摘要
Irrational use of antibiotics produces a large number of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). Wastewater treatment plants (WWTPs) act as important sources and sinks of ARGs, and play an important role in their generation, treatment, and dissemination. This study summarizes the types, concentrations, and factors of ARGs in WWTPs, investigates the sources of ARGs in wastewater, compares the removal efficiencies of different treatment processes on ARGs, and analyzes the potential risks of ARGs accumulation in effluent, sludge and their emission into the air. The results show that the main ARGs detected in the influent of WWTPs are the genes resistant to macrolides (ermB, ermF), tetracyclines (tetW, tetA, tetC), sulfonamides (sul1, sul2), and β-lactams (blaOXA, blaTEM). The concentrations of ARGs in the influent of the WWTPs are 2.23 × 102-3.90 × 109 copies/mL. Wastewater quality and microbial community are the dominant factors that affect the distribution characteristics of ARGs. The accumulation of ARGs in effluent, sludge, and aerosols pose potential risks to the regional ecological environment and human health. Based on these results, research trends with respect to ARGs in WWTPs are also prospected.
科研通智能强力驱动
Strongly Powered by AbleSci AI