Single-Atom Fe-N4 Sites for Catalytic Ozonation to Selectively Induce a Nonradical Pathway toward Wastewater Purification

化学 催化作用 单线态氧 吸附 草酸 光化学 光降解 激进的 溶解 臭氧 氧气 无机化学 有机化学 光催化
作者
Tengfei Ren,Mengxi Yin,Shuning Chen,Changpei Ouyang,Xia Huang,Xiaoyuan Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (9): 3623-3633 被引量:66
标识
DOI:10.1021/acs.est.2c07653
摘要

Nonradical oxidation has been determined to be a promising pathway for the degradation of organic pollutants in heterogeneous catalytic ozonation (HCO). However, the bottlenecks are the rational design of catalysts to selectively induce nonradicals and the interpretation of detailed nonradical generation mechanisms. Herein, we propose a new HCO process based on single-atom iron catalysts, in which Fe-N4 sites anchored on the carbon skeleton exhibited outstanding catalytic ozonation activity and stability for the degradation of oxalic acid (OA) and p-hydroxybenzoic acid (pHBA) as well as the advanced treatment of a landfill leachate secondary effluent. Unlike traditional radical oxidation, nonradical pathways based on surface-adsorbed atomic oxygen (*Oad) and singlet oxygen (1O2) were identified. A substrate-dependent behavior was also observed. OA was adsorbed on the catalyst surface and mainly degraded by *Oad, while pHBA was mostly removed by O3 and 1O2 in the bulk solution. Density functional theory calculations and molecular dynamics simulations revealed that one terminal oxygen atom of ozone preferred bonding with the central iron atom of Fe-N4, subsequently inducing the cleavage of the O-O bond near the catalyst surface to produce *Oad and 1O2. These findings highlight the structural design of an ozone catalyst and an atomic-level understanding of the nonradical HCO process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sexing完成签到,获得积分20
刚刚
你好发布了新的文献求助150
1秒前
1秒前
BareBear应助wfc采纳,获得10
2秒前
Dsivan发布了新的文献求助10
2秒前
2秒前
可爱的函函应助赤邪采纳,获得10
3秒前
义气的傲松完成签到,获得积分20
3秒前
张zi完成签到,获得积分10
3秒前
wtg发布了新的文献求助10
4秒前
法一完成签到 ,获得积分10
4秒前
充电宝应助ysl采纳,获得30
5秒前
5秒前
诸葛语蝶完成签到,获得积分10
5秒前
通~发布了新的文献求助10
5秒前
xpp完成签到 ,获得积分10
6秒前
dyh6802发布了新的文献求助10
6秒前
6秒前
7秒前
短腿小柯基完成签到,获得积分10
7秒前
完美世界应助研一小刘采纳,获得10
7秒前
7秒前
水萝卜完成签到 ,获得积分10
8秒前
8秒前
高高完成签到,获得积分10
9秒前
甜甜晓露发布了新的文献求助10
9秒前
ChiDaiOLD发布了新的文献求助10
10秒前
11秒前
szl完成签到,获得积分10
11秒前
12秒前
orixero应助跳跃的静曼采纳,获得10
12秒前
诺奖离我十万八千里完成签到,获得积分10
12秒前
高高发布了新的文献求助10
12秒前
16秒前
深情安青应助机智的青槐采纳,获得10
16秒前
茶茶发布了新的文献求助10
16秒前
szl发布了新的文献求助10
16秒前
Lucas应助京阿尼采纳,获得10
17秒前
甜甜晓露完成签到,获得积分10
18秒前
科研通AI5应助qifa采纳,获得10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808