A Fault Diagnosis Method of Aircraft Hydraulic System Based on SSA-DBN

水力机械 断层(地质) 深信不疑网络 工程类 人工智能 控制工程 计算机科学 人工神经网络 机械工程 地质学 地震学
作者
Jianguo Cui,Song Xue,Xiao Cui,Wenyou Du,Dong Liu,Mingyue Yu,Liying Jiang,Xiaogang Wang
标识
DOI:10.1109/ccdc55256.2022.10034292
摘要

The hydraulic system is one of the key systems on the aircraft, with the rapid development of aviation technology, the structure of the aircraft hydraulic system is becoming more and more complex, and there are many types of faults, which make it difficult to perform effective fault diagnosis. Therefore, in order to improve the accuracy of fault diagnosis of aircraft hydraulic system, this paper proposes a fault diagnosis method of aircraft hydraulic system based on SSA-DBN. Firstly, it adopts the status monitoring data of a certain type of aircraft hydraulic system, the Deep Belief Network (DBN) fault diagnosis network is established. On this basis, the number of nodes in the hidden layer of DBN network is optimized by using Salp Swarm Algorithm (SSA). According to the obtained optimal optimization parameters, the optimal DBN fault diagnosis model of aircraft hydraulic system is established. The fault technology of aircraft hydraulic system is studied by using the established optimal DBN fault diagnosis model of aircraft hydraulic system. The results show that the diagnostic accuracy of the SSA-DBN fault diagnosis model is obviously better than that of DBN, and it has a good application prospect.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
正正应助czx采纳,获得10
1秒前
lieeey应助陈秀娟采纳,获得10
1秒前
SciGPT应助小b亮采纳,获得10
1秒前
钱钱发布了新的文献求助10
1秒前
2秒前
Orange应助Lawfy采纳,获得10
2秒前
2秒前
snail01完成签到,获得积分10
2秒前
liuzr发布了新的文献求助10
3秒前
3秒前
Jasper应助不安的彤采纳,获得10
4秒前
5秒前
White_Night发布了新的文献求助10
5秒前
乐乐应助笠原May采纳,获得30
6秒前
Lynth_雪鸮发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
情怀应助任寒松采纳,获得10
7秒前
8秒前
静子完成签到,获得积分10
8秒前
常芹完成签到,获得积分10
8秒前
DyG发布了新的文献求助10
9秒前
Ava应助研友_xnEOX8采纳,获得10
9秒前
细腻的宫二完成签到,获得积分10
10秒前
11秒前
TingtingGZ发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
rrrrrr发布了新的文献求助10
13秒前
狗大王发布了新的文献求助10
13秒前
正己烷完成签到 ,获得积分10
15秒前
爱诺诺完成签到,获得积分10
16秒前
xiaoxu发布了新的文献求助10
16秒前
gdgd完成签到,获得积分10
16秒前
ChuangyangLi发布了新的文献求助10
17秒前
心怡发布了新的文献求助10
17秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620793
求助须知:如何正确求助?哪些是违规求助? 4705330
关于积分的说明 14931678
捐赠科研通 4763128
什么是DOI,文献DOI怎么找? 2551196
邀请新用户注册赠送积分活动 1513780
关于科研通互助平台的介绍 1474661