Identification of frequent acute exacerbations phenotype in COPD patients based on imaging and clinical characteristics

医学 慢性阻塞性肺病 恶化 逻辑回归 接收机工作特性 内科学 曲线下面积 重症监护医学
作者
Dan Zhu,Huiling Dai,Haiyan Zhu,Yuang Fang,Huihui Zhou,Qian Zhang,Shuguang Chu,Qian Xi
出处
期刊:Respiratory Medicine [Elsevier]
卷期号:209: 107150-107150 被引量:1
标识
DOI:10.1016/j.rmed.2023.107150
摘要

Background Chronic obstructive pulmonary disease (COPD) is a common disease with high morbidity, with acute exacerbations manifesting as a worsening of respiratory symptoms. This study aimed to identify the frequent acute exacerbation phenotype in patients with COPD based on imaging and clinical characteristics. Methods Patients with COPD (n = 201) were monitored for acute exacerbations one year after their initial hospital admission and further divided into frequent and non-frequent exacerbation groups according to the frequency and severity of acute exacerbations. All patients underwent high resolution CT scans and low attenuation area less than −950Hu (LAA-950) in the whole lung was measured. Differences in visual subtypes, LAA-950, and clinical basic characteristics were compared between groups. The clinical factors influencing frequent exacerbation were determined using binary logistic regression. Finally, based on imaging and clinical factors, the receiver operating characteristic curve was used to identify the phenotype of COPD with frequent acute exacerbations. Results Patients with frequent exacerbations had a larger LAA-950 than those non-frequent exacerbations patients (p<0.001). Frequent acute exacerbations were associated with worsening visual subtypes. Multivariate binary logistic regression illustrated that age, smoking status, BMI, FEV1 pred, and LAA-950 were associated with frequent exacerbations of COPD. The area under the receiver operating characteristic curve for predicting frequent exacerbations based on age, smoking status, BMI, FEV1 pred, and LAA-950 was 0.907 (p<0.001). Conclusion The combination of imaging and clinical characteristics reached high diagnostic efficacy in the identification of frequent acute exacerbations in patients with COPD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助哈比采纳,获得10
刚刚
huco发布了新的文献求助10
2秒前
an发布了新的文献求助10
3秒前
ff完成签到,获得积分10
4秒前
5秒前
5秒前
富贵发布了新的文献求助10
6秒前
还会遗憾吗完成签到,获得积分10
7秒前
7秒前
SciGPT应助包李采纳,获得10
8秒前
10秒前
qiuer0011完成签到,获得积分10
11秒前
皮皮发布了新的文献求助10
11秒前
文静含莲发布了新的文献求助10
11秒前
彭于晏应助hxnz2001采纳,获得10
12秒前
an完成签到,获得积分10
12秒前
MLH发布了新的文献求助10
12秒前
xiaoyudianddd完成签到,获得积分10
13秒前
往往超可爱完成签到 ,获得积分10
13秒前
刘滨豪发布了新的文献求助10
13秒前
cwq完成签到 ,获得积分10
14秒前
彭于晏应助害怕的擎宇采纳,获得10
15秒前
羊洋洋发布了新的文献求助10
15秒前
杏梨完成签到,获得积分10
17秒前
SciGPT应助虚幻的白秋采纳,获得10
19秒前
wuniuniu完成签到,获得积分10
19秒前
Ninini完成签到,获得积分10
19秒前
20秒前
21秒前
刘滨豪完成签到,获得积分10
21秒前
39完成签到,获得积分10
25秒前
彭于晏应助刘滨豪采纳,获得10
25秒前
迷茫的水母完成签到,获得积分10
25秒前
yyl发布了新的文献求助10
25秒前
婷宝爱学习完成签到,获得积分10
25秒前
周小满完成签到,获得积分10
26秒前
霍建玲发布了新的文献求助10
26秒前
思源应助苗条的静白采纳,获得10
28秒前
文静含莲完成签到,获得积分10
28秒前
科研通AI2S应助可爱的凛采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143795
求助须知:如何正确求助?哪些是违规求助? 2795335
关于积分的说明 7814544
捐赠科研通 2451315
什么是DOI,文献DOI怎么找? 1304413
科研通“疑难数据库(出版商)”最低求助积分说明 627230
版权声明 601419