A review of 3D reconstruction from high-resolution urban satellite images

卫星 计算机科学 摄影测量学 三维重建 遥感 计算机视觉 卫星图像 人工智能 匹配(统计) 地理 数学 统计 航空航天工程 工程类
作者
Zhao Li,Haiyan Wang,Yi Zhu,Mei Song
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (2): 713-748 被引量:8
标识
DOI:10.1080/01431161.2023.2169844
摘要

ABSTRACTABSTRACTAutomated 3D reconstruction based on satellite images has become a research hotspot at the interdisciplinary of photogrammetry and computer vision. The 3D results based on satellite images will play a key role in the understanding of global 3D information, monitoring of national geographic and urban construction, with the inherent advantage of satellite images in global coverage. Researchers have devoted substantial effort to develop state-of-the-art 3D reconstruction methods for two-view satellite images and multi-view satellite images. However, it is still a challenging task to obtain complete and accurate 3D results with satellite images due to the difference in shooting angles between satellite images, exposure differences and building occlusions in urban scenes. In this paper, we execute theoretical analyses and experimental evaluations about the popular 3D reconstruction methods towards satellite images following the order of two views to multiple views: (1) The advanced dense matching methods aimed at satellite images are reviewed theoretically and evaluated experimentally. (2) The state-of-the-art 3D reconstruction based on two-view satellite images are analysed in detail and experimentally evaluated with two-view WorldView-3 satellite images. (3) The popular fusion methods of multi-view DSM are analysed theoretically and assessed on multi-view WorldView-3 satellite images. This review will be helpful for researchers dedicated to enhancing the accuracy and completeness of the results of 3D reconstruction from urban satellite images.KEYWORDS: Urban satellite image3D reconstructiondense matchingmulti-view DSM fusion Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research received no external funding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呜呜呜发布了新的文献求助10
刚刚
2秒前
墨竹青浅完成签到,获得积分10
2秒前
直率愫完成签到,获得积分10
2秒前
3秒前
4秒前
酱香饼发布了新的文献求助10
5秒前
Ava应助无情的如波采纳,获得10
6秒前
李暖玉发布了新的文献求助10
6秒前
希望天下0贩的0应助CLL采纳,获得10
6秒前
在水一方应助wjx采纳,获得10
6秒前
Susan完成签到,获得积分10
6秒前
垚乐应助wjx采纳,获得10
6秒前
烟花应助wjx采纳,获得10
6秒前
垚乐应助wjx采纳,获得10
7秒前
星辰大海应助wjx采纳,获得10
7秒前
毛豆应助wjx采纳,获得10
7秒前
赘婿应助wjx采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
希望天下0贩的0应助wjx采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
赘婿应助wjx采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
ding应助wjx采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
慕青应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
布丁应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得30
8秒前
cocolu应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708