A review of 3D reconstruction from high-resolution urban satellite images

卫星 计算机科学 摄影测量学 三维重建 遥感 计算机视觉 卫星图像 人工智能 匹配(统计) 地理 数学 统计 航空航天工程 工程类
作者
Zhao Li,Haiyan Wang,Yi Zhu,Mei Song
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (2): 713-748 被引量:19
标识
DOI:10.1080/01431161.2023.2169844
摘要

Automated 3D reconstruction based on satellite images has become a research hotspot at the interdisciplinary of photogrammetry and computer vision. The 3D results based on satellite images will play a key role in the understanding of global 3D information, monitoring of national geographic and urban construction, with the inherent advantage of satellite images in global coverage. Researchers have devoted substantial effort to develop state-of-the-art 3D reconstruction methods for two-view satellite images and multi-view satellite images. However, it is still a challenging task to obtain complete and accurate 3D results with satellite images due to the difference in shooting angles between satellite images, exposure differences and building occlusions in urban scenes. In this paper, we execute theoretical analyses and experimental evaluations about the popular 3D reconstruction methods towards satellite images following the order of two views to multiple views: (1) The advanced dense matching methods aimed at satellite images are reviewed theoretically and evaluated experimentally. (2) The state-of-the-art 3D reconstruction based on two-view satellite images are analysed in detail and experimentally evaluated with two-view WorldView-3 satellite images. (3) The popular fusion methods of multi-view DSM are analysed theoretically and assessed on multi-view WorldView-3 satellite images. This review will be helpful for researchers dedicated to enhancing the accuracy and completeness of the results of 3D reconstruction from urban satellite images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助kekao采纳,获得10
刚刚
刚刚
tengli发布了新的文献求助10
刚刚
SHIKAMARU完成签到,获得积分10
2秒前
杨尚朋完成签到,获得积分10
2秒前
2秒前
2秒前
Akim应助esdeath采纳,获得10
3秒前
科研通AI5应助Inahurry采纳,获得10
3秒前
小赵完成签到,获得积分10
4秒前
zhui发布了新的文献求助10
4秒前
4秒前
5秒前
sakurai应助Maxw采纳,获得10
5秒前
xiangxl发布了新的文献求助10
5秒前
5秒前
6秒前
UGO发布了新的文献求助10
6秒前
lh发布了新的文献求助10
6秒前
乐乐应助个性尔槐采纳,获得10
6秒前
希望天下0贩的0应助瑶625采纳,获得10
7秒前
tengli完成签到,获得积分20
7秒前
劲秉应助坚定迎天采纳,获得20
7秒前
桐桐应助杨枝甘露樱桃采纳,获得10
8秒前
搜集达人应助zhuzhu采纳,获得20
8秒前
LiShin发布了新的文献求助10
9秒前
末岛发布了新的文献求助10
9秒前
9秒前
coffee完成签到,获得积分10
10秒前
李来仪发布了新的文献求助10
10秒前
长安完成签到,获得积分10
11秒前
Hao完成签到,获得积分10
11秒前
JamesPei应助王小志采纳,获得10
11秒前
詹密完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
酷波er应助NEMO采纳,获得10
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794