Low-Light Image Enhancement via Stage-Transformer-Guided Network

计算机科学 稳健性(进化) 直方图 利用 人工智能 变压器 背光 计算机视觉 模式识别(心理学) 图像(数学) 工程类 电压 液晶显示器 生物化学 化学 计算机安全 电气工程 基因 操作系统
作者
Nanfeng Jiang,Junhong Lin,Ting Zhang,Haifeng Zheng,Tiesong Zhao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3701-3712 被引量:20
标识
DOI:10.1109/tcsvt.2023.3239511
摘要

Images collected in low-light environments usually suffer from multiple, non-uniform distributed distortions, including local dark, dim light, backlit and so on. In this paper, we propose a Stage-Transformer-Guided Network (STGNet) that effectively handles region-specific distributions and enhance diverse low-light images. Specifically, our STGNet adopts a multi-stage way to progressively learn hierarchical features that benefit the robustness of our model. At each stage, we design an efficient transformer with horizontal and vertical attentions that jointly capture degradation distributions with different magnitudes and orientations. We also introduce learnable degradation queries to adaptively select task-specific features of degradations for enhancement. In addition, we design a histogram loss for enhancement and combine it with other loss functions, in order to exploit both global contrast and local details during network training. Benefiting from the above contributions, our STGNet achieves the state-of-the-art performances on both synthetic and real-world datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖芒果发布了新的文献求助10
刚刚
小蚂蚁发布了新的文献求助10
刚刚
憨憨发布了新的文献求助10
1秒前
酷波er应助Young采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
念0发布了新的文献求助10
1秒前
嘿嘿应助一一采纳,获得10
2秒前
niagvbjkhsdfvc完成签到,获得积分10
2秒前
2秒前
hyishu完成签到,获得积分10
3秒前
LJY完成签到,获得积分10
3秒前
调皮芫完成签到,获得积分10
3秒前
Zn中毒完成签到,获得积分10
3秒前
彭于晏应助wweq采纳,获得10
3秒前
小张医生完成签到,获得积分10
3秒前
闲之野鹤完成签到,获得积分10
4秒前
liuHX完成签到,获得积分10
4秒前
5秒前
5秒前
Huang完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
qiqibaby发布了新的文献求助10
5秒前
czz完成签到,获得积分10
6秒前
6秒前
半农应助dtcao采纳,获得10
7秒前
Rico_完成签到,获得积分10
7秒前
7秒前
8秒前
豆豆给豆豆的求助进行了留言
8秒前
lp20094479发布了新的文献求助10
9秒前
慕青应助cccc采纳,获得10
9秒前
9秒前
9秒前
星辰大海应助wweq采纳,获得10
9秒前
qijie发布了新的文献求助10
9秒前
Charon完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997