No One Left Behind: Real-World Federated Class-Incremental Learning

遗忘 计算机科学 班级(哲学) 人工智能 稳健性(进化) 机器学习 认知心理学 心理学 生物化学 化学 基因
作者
Jiahua Dong,Cong Yao,Ge Sun,Yulun Zhang,Bernt Schiele,Dengxin Dai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.00903
摘要

Federated learning (FL) is a hot collaborative training framework via aggregating model parameters of decentralized local clients. However, most FL methods unreasonably assume data categories of FL framework are known and fixed in advance. Moreover, some new local clients that collect novel categories unseen by other clients may be introduced to FL training irregularly. These issues render global model to undergo catastrophic forgetting on old categories, when local clients receive new categories consecutively under limited memory of storing old categories. To tackle the above issues, we propose a novel Local-Global Anti-forgetting (LGA) model. It ensures no local clients are left behind as they learn new classes continually, by addressing local and global catastrophic forgetting. Specifically, considering tackling class imbalance of local client to surmount local forgetting, we develop a category-balanced gradient-adaptive compensation loss and a category gradient-induced semantic distillation loss. They can balance heterogeneous forgetting speeds of hard-to-forget and easy-to-forget old categories, while ensure consistent class-relations within different tasks. Moreover, a proxy server is designed to tackle global forgetting caused by Non-IID class imbalance between different clients. It augments perturbed prototype images of new categories collected from local clients via self-supervised prototype augmentation, thus improving robustness to choose the best old global model for local-side semantic distillation loss. Experiments on representative datasets verify superior performance of our model against comparison methods. The code is available at https://github.com/JiahuaDong/LGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助唐同学采纳,获得10
刚刚
onward完成签到,获得积分10
刚刚
1秒前
胖头鱼13182完成签到,获得积分10
1秒前
劲秉应助王菠萝采纳,获得10
1秒前
1秒前
小二郎应助Tony采纳,获得10
2秒前
宋金禄完成签到,获得积分10
2秒前
拟好发布了新的文献求助50
2秒前
123号完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
万能图书馆应助77采纳,获得10
3秒前
善学以致用应助GL采纳,获得10
3秒前
xiaolong发布了新的文献求助10
3秒前
落后志泽完成签到,获得积分20
4秒前
小猫宝发布了新的文献求助10
4秒前
lL完成签到,获得积分10
4秒前
4秒前
5秒前
十二完成签到,获得积分10
6秒前
daodao应助廖qingliang采纳,获得10
6秒前
麦子发布了新的文献求助10
6秒前
华生发布了新的文献求助10
7秒前
Xide发布了新的文献求助10
8秒前
wushuang发布了新的文献求助10
8秒前
橙子发布了新的文献求助10
9秒前
阔达不凡完成签到,获得积分10
9秒前
星辰大海应助洞悉采纳,获得10
9秒前
FashionBoy应助sganthem采纳,获得10
10秒前
10秒前
砍柴少年发布了新的文献求助10
10秒前
若离发布了新的文献求助10
11秒前
11秒前
Li完成签到,获得积分10
12秒前
robust66完成签到,获得积分10
12秒前
12秒前
酷波er应助Nora采纳,获得10
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447957
求助须知:如何正确求助?哪些是违规求助? 3043737
关于积分的说明 8995863
捐赠科研通 2732154
什么是DOI,文献DOI怎么找? 1498672
科研通“疑难数据库(出版商)”最低求助积分说明 692878
邀请新用户注册赠送积分活动 690677