No One Left Behind: Real-World Federated Class-Incremental Learning

遗忘 计算机科学 班级(哲学) 人工智能 稳健性(进化) 机器学习 认知心理学 心理学 生物化学 化学 基因
作者
Jiahua Dong,Cong Yang,Gan Sun,Yulun Zhang,Bernt Schiele,Dengxin Dai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2302.00903
摘要

Federated learning (FL) is a hot collaborative training framework via aggregating model parameters of decentralized local clients. However, most FL methods unreasonably assume data categories of FL framework are known and fixed in advance. Moreover, some new local clients that collect novel categories unseen by other clients may be introduced to FL training irregularly. These issues render global model to undergo catastrophic forgetting on old categories, when local clients receive new categories consecutively under limited memory of storing old categories. To tackle the above issues, we propose a novel Local-Global Anti-forgetting (LGA) model. It ensures no local clients are left behind as they learn new classes continually, by addressing local and global catastrophic forgetting. Specifically, considering tackling class imbalance of local client to surmount local forgetting, we develop a category-balanced gradient-adaptive compensation loss and a category gradient-induced semantic distillation loss. They can balance heterogeneous forgetting speeds of hard-to-forget and easy-to-forget old categories, while ensure consistent class-relations within different tasks. Moreover, a proxy server is designed to tackle global forgetting caused by Non-IID class imbalance between different clients. It augments perturbed prototype images of new categories collected from local clients via self-supervised prototype augmentation, thus improving robustness to choose the best old global model for local-side semantic distillation loss. Experiments on representative datasets verify superior performance of our model against comparison methods. The code is available at https://github.com/JiahuaDong/LGA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zedhumble完成签到,获得积分10
刚刚
余裕发布了新的文献求助10
1秒前
1秒前
摆烂王子发布了新的文献求助10
1秒前
lin完成签到,获得积分10
2秒前
3秒前
CodeCraft应助111采纳,获得20
3秒前
打工人发布了新的文献求助10
4秒前
小俊完成签到,获得积分10
4秒前
yuan完成签到 ,获得积分10
6秒前
6秒前
JamesPei应助Deq采纳,获得40
6秒前
sikaixue发布了新的文献求助10
6秒前
斯文败类应助nasya采纳,获得10
6秒前
yuanwei发布了新的文献求助10
7秒前
8秒前
idannn完成签到,获得积分10
9秒前
ling完成签到,获得积分10
9秒前
10秒前
凡城完成签到,获得积分10
10秒前
鲤鱼鸽子发布了新的文献求助10
10秒前
11秒前
大欣发布了新的文献求助10
11秒前
今后应助清脆的问枫采纳,获得10
12秒前
小杭76应助mei采纳,获得10
12秒前
13秒前
183完成签到,获得积分10
13秒前
hongbb发布了新的文献求助10
13秒前
凡千灵溪完成签到 ,获得积分10
13秒前
SciGPT应助ywl采纳,获得10
14秒前
15秒前
15秒前
zzz发布了新的文献求助10
15秒前
李健应助Free采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
17秒前
科目三应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
大个应助科研通管家采纳,获得10
17秒前
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396892
求助须知:如何正确求助?哪些是违规求助? 4517252
关于积分的说明 14062680
捐赠科研通 4429000
什么是DOI,文献DOI怎么找? 2432179
邀请新用户注册赠送积分活动 1424688
关于科研通互助平台的介绍 1403672