SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis

变更检测 计算机科学 合成孔径雷达 时间序列 遥感 土地覆盖 数据挖掘 人工智能 土地利用 机器学习 地理 工程类 土木工程
作者
Weisong Li,Peifeng Ma,Haipeng Wang,Chaoyang Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2023.3243900
摘要

Change detection has played an increasingly important role in multitemporal remote sensing applications recently. Long time series analysis is providing new information of land cover changes and improving the quality and accuracy of the change information being derived from remote sensing. The purpose of this study is to dig for more change temporal information and change pattern information from synthetic aperture radar (SAR) image time series (ITS), which is of great significance for monitoring urban area changes, conducting land use surveys, and renovating illegal constructions. In the study, a novel unified framework for long time series SAR image change detection and change pattern analysis (SAR-TSCC) was proposed for land cover change mapping. To obtain the most notable change time rapidly, a fast SAR ITS change point search method based on pruned exact linear time (SAR-PELT) algorithm was adopted. Meanwhile, the deep time series classification network, named SAR time series transformer (SAR-TST), was implemented to recognize the change patterns, which is based on time series transformer (TST) architecture. Considering the lack of real training data, a novel synthetic data generation method is developed. The combination of the synthetic and real data enhanced the generalization of the classifiers. The proposed framework was used for monitoring a large urbanization area in the northwest of Hong Kong, China. The Cosmo Skymed (CSK) time series data acquired from 2013 to 2020 were exploited for land cover change analysis. Experiment results showed that our approach achieved the state-of-the-art performance, as the time accuracy reached 86% and the classification accuracy on the four main change patterns (impulse, step, cycle, and complex) is over 99%. In particular, the proposed SAR-TST model showed remarkable advantages in the presence of insufficient real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yatou327完成签到,获得积分10
刚刚
梁哲铭完成签到,获得积分10
1秒前
yuer完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
dew应助Jenny采纳,获得10
4秒前
yuer发布了新的文献求助10
4秒前
Jasper应助自由的元冬采纳,获得30
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
Liyf给Liyf的求助进行了留言
7秒前
研友_VZG7GZ应助yly采纳,获得10
8秒前
汤姆猫完成签到,获得积分10
8秒前
LaTeXer应助budingman采纳,获得30
8秒前
李健的小迷弟应助budingman采纳,获得10
8秒前
WYCheng1发布了新的文献求助30
9秒前
李金蔚完成签到,获得积分10
9秒前
英俊的铭应助纯真的火车采纳,获得10
10秒前
芝麻发布了新的文献求助20
10秒前
lina发布了新的文献求助50
11秒前
11秒前
壮观的白羊完成签到 ,获得积分10
12秒前
12秒前
12秒前
Can完成签到,获得积分10
13秒前
14秒前
ding应助gao采纳,获得10
14秒前
zd发布了新的文献求助10
15秒前
Cher.发布了新的文献求助10
15秒前
shuo发布了新的文献求助10
17秒前
17秒前
17秒前
19秒前
逍遥游发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
wt9189999完成签到,获得积分10
22秒前
史淼荷发布了新的文献求助50
22秒前
22秒前
我是老大应助研友_LNB7rL采纳,获得10
22秒前
搜集达人应助潇洒斑马采纳,获得30
22秒前
冷傲青柏发布了新的文献求助20
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729103
求助须知:如何正确求助?哪些是违规求助? 5316038
关于积分的说明 15315703
捐赠科研通 4876092
什么是DOI,文献DOI怎么找? 2619225
邀请新用户注册赠送积分活动 1568759
关于科研通互助平台的介绍 1525277