SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis

变更检测 计算机科学 合成孔径雷达 时间序列 遥感 土地覆盖 数据挖掘 人工智能 土地利用 机器学习 地理 工程类 土木工程
作者
Weisong Li,Peifeng Ma,Haipeng Wang,Chaoyang Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2023.3243900
摘要

Change detection has played an increasingly important role in multitemporal remote sensing applications recently. Long time series analysis is providing new information of land cover changes and improving the quality and accuracy of the change information being derived from remote sensing. The purpose of this study is to dig for more change temporal information and change pattern information from synthetic aperture radar (SAR) image time series (ITS), which is of great significance for monitoring urban area changes, conducting land use surveys, and renovating illegal constructions. In the study, a novel unified framework for long time series SAR image change detection and change pattern analysis (SAR-TSCC) was proposed for land cover change mapping. To obtain the most notable change time rapidly, a fast SAR ITS change point search method based on pruned exact linear time (SAR-PELT) algorithm was adopted. Meanwhile, the deep time series classification network, named SAR time series transformer (SAR-TST), was implemented to recognize the change patterns, which is based on time series transformer (TST) architecture. Considering the lack of real training data, a novel synthetic data generation method is developed. The combination of the synthetic and real data enhanced the generalization of the classifiers. The proposed framework was used for monitoring a large urbanization area in the northwest of Hong Kong, China. The Cosmo Skymed (CSK) time series data acquired from 2013 to 2020 were exploited for land cover change analysis. Experiment results showed that our approach achieved the state-of-the-art performance, as the time accuracy reached 86% and the classification accuracy on the four main change patterns (impulse, step, cycle, and complex) is over 99%. In particular, the proposed SAR-TST model showed remarkable advantages in the presence of insufficient real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sky完成签到,获得积分20
1秒前
流萤完成签到,获得积分10
1秒前
2秒前
2秒前
www发布了新的文献求助10
2秒前
gyr完成签到,获得积分10
2秒前
3秒前
3秒前
22完成签到 ,获得积分10
3秒前
4秒前
科研通AI6应助朴实的秋采纳,获得10
4秒前
科研通AI6应助会相逢采纳,获得10
4秒前
阳光千筹完成签到,获得积分10
5秒前
5秒前
生动的愚志完成签到,获得积分20
5秒前
王太祖完成签到,获得积分10
6秒前
vv发布了新的文献求助10
7秒前
zhang发布了新的文献求助10
8秒前
aaaaaawwwww完成签到,获得积分10
8秒前
wtp发布了新的文献求助10
8秒前
大个应助cc采纳,获得10
8秒前
Owen应助lagom采纳,获得10
8秒前
fay发布了新的文献求助10
9秒前
CA274ABTFY发布了新的文献求助10
9秒前
mncvjs发布了新的文献求助10
9秒前
天天快乐应助WX采纳,获得20
10秒前
xxfsx应助淡定的勒采纳,获得10
10秒前
英俊愚志完成签到,获得积分10
10秒前
10秒前
10秒前
www完成签到,获得积分10
10秒前
10秒前
xftx完成签到 ,获得积分10
11秒前
FashionBoy应助chen采纳,获得10
11秒前
helong完成签到,获得积分10
11秒前
11秒前
在水一方应助陈艳林采纳,获得10
12秒前
13秒前
vffg完成签到,获得积分10
14秒前
helong发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723