清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis

变更检测 计算机科学 合成孔径雷达 时间序列 遥感 土地覆盖 数据挖掘 人工智能 土地利用 机器学习 地理 工程类 土木工程
作者
Weisong Li,Peifeng Ma,Haipeng Wang,Chaoyang Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2023.3243900
摘要

Change detection has played an increasingly important role in multitemporal remote sensing applications recently. Long time series analysis is providing new information of land cover changes and improving the quality and accuracy of the change information being derived from remote sensing. The purpose of this study is to dig for more change temporal information and change pattern information from synthetic aperture radar (SAR) image time series (ITS), which is of great significance for monitoring urban area changes, conducting land use surveys, and renovating illegal constructions. In the study, a novel unified framework for long time series SAR image change detection and change pattern analysis (SAR-TSCC) was proposed for land cover change mapping. To obtain the most notable change time rapidly, a fast SAR ITS change point search method based on pruned exact linear time (SAR-PELT) algorithm was adopted. Meanwhile, the deep time series classification network, named SAR time series transformer (SAR-TST), was implemented to recognize the change patterns, which is based on time series transformer (TST) architecture. Considering the lack of real training data, a novel synthetic data generation method is developed. The combination of the synthetic and real data enhanced the generalization of the classifiers. The proposed framework was used for monitoring a large urbanization area in the northwest of Hong Kong, China. The Cosmo Skymed (CSK) time series data acquired from 2013 to 2020 were exploited for land cover change analysis. Experiment results showed that our approach achieved the state-of-the-art performance, as the time accuracy reached 86% and the classification accuracy on the four main change patterns (impulse, step, cycle, and complex) is over 99%. In particular, the proposed SAR-TST model showed remarkable advantages in the presence of insufficient real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr.Tang完成签到 ,获得积分10
4秒前
13秒前
Siren发布了新的文献求助30
17秒前
披着羊皮的狼完成签到 ,获得积分10
51秒前
52秒前
sci完成签到 ,获得积分10
54秒前
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI5应助Siren采纳,获得10
1分钟前
1分钟前
Siren发布了新的文献求助10
1分钟前
ding应助瑁柏采纳,获得10
1分钟前
瑁柏完成签到,获得积分10
1分钟前
1分钟前
1分钟前
瑁柏发布了新的文献求助10
1分钟前
Siren发布了新的文献求助10
1分钟前
2分钟前
Ggap1发布了新的文献求助10
2分钟前
Ggap1完成签到,获得积分10
2分钟前
思源应助Siren采纳,获得10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Siren发布了新的文献求助10
3分钟前
Xu完成签到,获得积分20
3分钟前
荣浩宇完成签到 ,获得积分10
3分钟前
3分钟前
科研通AI5应助和谐乌龟采纳,获得10
4分钟前
4分钟前
4分钟前
mo发布了新的文献求助10
4分钟前
4分钟前
雪山飞龙完成签到,获得积分10
4分钟前
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664