SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis

变更检测 计算机科学 合成孔径雷达 时间序列 遥感 土地覆盖 数据挖掘 人工智能 土地利用 机器学习 地理 工程类 土木工程
作者
Weisong Li,Peifeng Ma,Haipeng Wang,Chaoyang Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2023.3243900
摘要

Change detection has played an increasingly important role in multitemporal remote sensing applications recently. Long time series analysis is providing new information of land cover changes and improving the quality and accuracy of the change information being derived from remote sensing. The purpose of this study is to dig for more change temporal information and change pattern information from synthetic aperture radar (SAR) image time series (ITS), which is of great significance for monitoring urban area changes, conducting land use surveys, and renovating illegal constructions. In the study, a novel unified framework for long time series SAR image change detection and change pattern analysis (SAR-TSCC) was proposed for land cover change mapping. To obtain the most notable change time rapidly, a fast SAR ITS change point search method based on pruned exact linear time (SAR-PELT) algorithm was adopted. Meanwhile, the deep time series classification network, named SAR time series transformer (SAR-TST), was implemented to recognize the change patterns, which is based on time series transformer (TST) architecture. Considering the lack of real training data, a novel synthetic data generation method is developed. The combination of the synthetic and real data enhanced the generalization of the classifiers. The proposed framework was used for monitoring a large urbanization area in the northwest of Hong Kong, China. The Cosmo Skymed (CSK) time series data acquired from 2013 to 2020 were exploited for land cover change analysis. Experiment results showed that our approach achieved the state-of-the-art performance, as the time accuracy reached 86% and the classification accuracy on the four main change patterns (impulse, step, cycle, and complex) is over 99%. In particular, the proposed SAR-TST model showed remarkable advantages in the presence of insufficient real data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小栩完成签到 ,获得积分10
1秒前
2秒前
4秒前
xhs12138完成签到,获得积分10
5秒前
科目三应助lx采纳,获得10
6秒前
6秒前
8秒前
8秒前
Ch完成签到 ,获得积分10
9秒前
曾无忧应助lianliyou采纳,获得10
10秒前
10秒前
俭朴夏菡发布了新的文献求助10
10秒前
renyi97发布了新的文献求助10
12秒前
要减肥发布了新的文献求助10
12秒前
雅丽完成签到,获得积分10
12秒前
小蘑菇应助阔达小懒虫采纳,获得10
12秒前
17秒前
17秒前
要减肥完成签到,获得积分20
17秒前
18秒前
kk完成签到,获得积分10
19秒前
打打应助renyi97采纳,获得10
19秒前
毛毛弟完成签到 ,获得积分10
20秒前
寸愿完成签到,获得积分10
20秒前
俭朴夏菡完成签到,获得积分10
21秒前
几几完成签到,获得积分10
22秒前
Lyy发布了新的文献求助10
22秒前
调皮的凝旋完成签到,获得积分10
23秒前
寸愿发布了新的文献求助10
24秒前
keyanzhang完成签到 ,获得积分0
24秒前
琦琦国王完成签到,获得积分10
26秒前
淡定静白完成签到,获得积分10
30秒前
Jun应助浅浅采纳,获得10
31秒前
等待巧曼完成签到,获得积分10
32秒前
32秒前
小马甲应助zai采纳,获得10
32秒前
乐观的非笑完成签到,获得积分10
33秒前
危机的雪巧完成签到,获得积分10
33秒前
33秒前
lucky完成签到,获得积分10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175