SAR-TSCC: A Novel Approach for Long Time Series SAR Image Change Detection and Pattern Analysis

变更检测 计算机科学 合成孔径雷达 时间序列 遥感 土地覆盖 数据挖掘 人工智能 土地利用 机器学习 地理 工程类 土木工程
作者
Weisong Li,Peifeng Ma,Haipeng Wang,Chaoyang Fang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:9
标识
DOI:10.1109/tgrs.2023.3243900
摘要

Change detection has played an increasingly important role in multitemporal remote sensing applications recently. Long time series analysis is providing new information of land cover changes and improving the quality and accuracy of the change information being derived from remote sensing. The purpose of this study is to dig for more change temporal information and change pattern information from synthetic aperture radar (SAR) image time series (ITS), which is of great significance for monitoring urban area changes, conducting land use surveys, and renovating illegal constructions. In the study, a novel unified framework for long time series SAR image change detection and change pattern analysis (SAR-TSCC) was proposed for land cover change mapping. To obtain the most notable change time rapidly, a fast SAR ITS change point search method based on pruned exact linear time (SAR-PELT) algorithm was adopted. Meanwhile, the deep time series classification network, named SAR time series transformer (SAR-TST), was implemented to recognize the change patterns, which is based on time series transformer (TST) architecture. Considering the lack of real training data, a novel synthetic data generation method is developed. The combination of the synthetic and real data enhanced the generalization of the classifiers. The proposed framework was used for monitoring a large urbanization area in the northwest of Hong Kong, China. The Cosmo Skymed (CSK) time series data acquired from 2013 to 2020 were exploited for land cover change analysis. Experiment results showed that our approach achieved the state-of-the-art performance, as the time accuracy reached 86% and the classification accuracy on the four main change patterns (impulse, step, cycle, and complex) is over 99%. In particular, the proposed SAR-TST model showed remarkable advantages in the presence of insufficient real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panda发布了新的文献求助10
1秒前
Sivledy完成签到,获得积分10
2秒前
2秒前
wuyu发布了新的文献求助10
2秒前
LXR发布了新的文献求助10
2秒前
2秒前
3秒前
多金多金完成签到 ,获得积分10
5秒前
自信石头发布了新的文献求助10
5秒前
吧唧发布了新的文献求助10
6秒前
传奇3应助强健的匕采纳,获得10
6秒前
深情安青应助对映体采纳,获得10
6秒前
7秒前
儒雅的蜜粉完成签到,获得积分10
7秒前
zz发布了新的文献求助10
7秒前
7秒前
8秒前
陈丞澄发布了新的文献求助10
8秒前
蓦然发布了新的文献求助10
11秒前
11秒前
YCG完成签到 ,获得积分10
12秒前
竹筏过海应助淡然天问采纳,获得30
12秒前
浮游应助淡然天问采纳,获得10
12秒前
领导范儿应助柔弱的冬天采纳,获得30
13秒前
落后翠柏发布了新的文献求助10
14秒前
不安的成协完成签到,获得积分10
15秒前
15秒前
16秒前
长情听南发布了新的文献求助10
17秒前
锦慜发布了新的文献求助10
17秒前
顾矜应助蓦然采纳,获得10
18秒前
可爱的函函应助panda采纳,获得10
18秒前
量子星尘发布了新的文献求助10
18秒前
李昕123发布了新的文献求助10
19秒前
19秒前
吧唧完成签到,获得积分10
20秒前
123456完成签到,获得积分10
21秒前
大模型应助wjy321采纳,获得10
21秒前
云漫山发布了新的文献求助10
21秒前
Ruby应助jsss采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637805
求助须知:如何正确求助?哪些是违规求助? 4744034
关于积分的说明 15000235
捐赠科研通 4795945
什么是DOI,文献DOI怎么找? 2562246
邀请新用户注册赠送积分活动 1521747
关于科研通互助平台的介绍 1481704