Towards storable and durable Zn-MnO2 batteries with hydrous tetraglyme electrolyte

电解质 电化学 法拉第效率 溶解 阴极 电池(电) 无机化学 化学工程 材料科学 锂(药物) 化学 电极 有机化学 物理化学 工程类 医学 功率(物理) 物理 量子力学 内分泌学
作者
Kaixuan Ma,Gongzheng Yang,Chengxin Wang
出处
期刊:Journal of Energy Chemistry [Elsevier]
卷期号:80: 432-441 被引量:18
标识
DOI:10.1016/j.jechem.2023.01.012
摘要

Aqueous rechargeable zinc-based batteries have attracted increasing interest and been considered potential alternatives for state-of-the-art lithium-ion batteries because of the low cost and high safety. Many cathode materials have been gradually developed and demonstrated excellent electrochemical performances. However, the complex electrochemistry, inevitable hydrogen release, and zinc corrosion severely hinder the practical application. The most concerned Zn-MnO2 batteries still suffer from the Mn dissolution and formation of byproducts. By adding organic solvents to inhibit the activity of water molecules, the hydrous organic electrolytes provide a sound solution for eliminating the unfavorable factors. Here we report a tetraethylene glycol dimethyl ether-based hydrous organic electrolyte consisting of LiClO4·3H2O and Zn(ClO4)2·6H2O, and a birnessite-type MnO2 cathode material for Zn-MnO2 batteries. The Li+/Zn2+ ions co-(de)insertion mechanism is ascertained by the structural and morphological analyses. The electrostatic interaction between inserted ions and crystal structure is reduced effectively by employment of monovalent Li+ ions, which ensures structural stability of cathode materials. Hydrous tetraglyme electrolyte inhibits the activity of water molecules and thus avoids the formation of byproduct Zn4ClO4(OH)7. Meanwhile, highly stable Zn plating/stripping for over 1500 h, an average coulombic efficiency of >99% in long-term cycling, and ultralong storage life (the cells can work well after stored over 1 year) are simultaneously realized in the novel electrolyte. Benefitting from these aspects, the Zn-MnO2 batteries manifest high specific capacity of 132 mA h g−1, an operating voltage of 1.25 V, and a capacity retention of >98% after 1000 cycles at a current density of 200 mA g−1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
快乐的菠萝完成签到,获得积分10
1秒前
1秒前
张成伦发布了新的文献求助10
1秒前
领导范儿应助nemo711采纳,获得10
1秒前
xixihaha发布了新的文献求助10
2秒前
young4u发布了新的文献求助10
2秒前
慕青应助Udo采纳,获得10
2秒前
2秒前
安平完成签到,获得积分10
2秒前
2秒前
Pessica完成签到,获得积分20
2秒前
rrr完成签到,获得积分20
2秒前
buxixi完成签到,获得积分20
2秒前
洋洋晓晓完成签到 ,获得积分10
3秒前
胖虎发布了新的文献求助10
3秒前
深情安青应助Damon采纳,获得10
3秒前
3秒前
3秒前
drughunter009完成签到 ,获得积分10
4秒前
小发发发布了新的文献求助10
4秒前
4秒前
4秒前
Ven23发布了新的文献求助10
4秒前
finally完成签到,获得积分10
4秒前
无辜友绿完成签到,获得积分10
4秒前
4秒前
5秒前
在水一方应助白英采纳,获得10
5秒前
临兵者完成签到 ,获得积分10
5秒前
Pessica发布了新的文献求助10
5秒前
快乐的钥匙完成签到,获得积分10
5秒前
DongWei95完成签到,获得积分10
5秒前
隐形曼青应助不吃香菜采纳,获得10
6秒前
酷波er应助贰什柒采纳,获得10
6秒前
复杂的孤容完成签到,获得积分10
6秒前
ing完成签到,获得积分10
7秒前
王冬瓜完成签到,获得积分10
7秒前
单薄雅阳发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653664
求助须知:如何正确求助?哪些是违规求助? 4790471
关于积分的说明 15065629
捐赠科研通 4812355
什么是DOI,文献DOI怎么找? 2574458
邀请新用户注册赠送积分活动 1530009
关于科研通互助平台的介绍 1488710