Intelligent Offloading Decision and Resource Allocation for Mobile Edge Computing

云计算 计算机科学 服务器 移动边缘计算 边缘计算 计算卸载 GSM演进的增强数据速率 资源配置 分布式计算 计算机网络 移动设备 边缘设备 移动云计算 操作系统 人工智能
作者
Omar Baslaim,Azlan Awang
标识
DOI:10.1109/icftsc57269.2022.10039944
摘要

Mobile Edge Computing (MEC) is one of the most promising paradigms for overcoming Edge Devices (EDs) constraints. These EDs suffer from resource limitations in terms of power and computation.MEC will be more prevalent with the rising resource- intensive and time-sensitive EDs applications. MEC is considered a superior alternative to cloud computing. Despite computational offloading to the cloud offeringsignificant benefits related to computing and storage, EDs are geographically distant from the cloud, leading to significant transmission delays. However, offloading to the nearest server and ignoring the huge capabilities of the cloud is not always a good option. In contrast, local computing is rarely preferable. On the other hand, sometimes offloading to the nearest server is impossible, because of the current state of the server. These possibilities, as well as MEC system unpredictability, make the offloading decision difficult and critical. Therefore, the idea of the proposed model is based on Reinforcement Learning (RL). Moreover, the model is designed to make an optimal decision amongthe three offloading options; nearest edge server, best edge server, and cloud. The edge server can decide to offload tasks to the optimal available edge server or cloud directly, which depends on several parameters for reducing execution time and energy consumption. In addition, the edge server connects to all componentswithin its region, which improve the managing of resource allocation. This proposed model is expected to be optimal in edge servers connection and intelligent offloading decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
niwei完成签到,获得积分20
1秒前
情怀应助无限数据线采纳,获得30
3秒前
思源应助墨苏采纳,获得10
3秒前
萧水白应助慕倦采纳,获得10
5秒前
荔枝发布了新的文献求助50
6秒前
6秒前
lxh完成签到,获得积分10
10秒前
桐桐应助mirror采纳,获得30
10秒前
美好不言完成签到,获得积分20
10秒前
强强嘻嘻完成签到,获得积分10
11秒前
感动归尘应助xiaotaiyang采纳,获得10
17秒前
manman关注了科研通微信公众号
17秒前
文质彬彬完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
hhhh发布了新的文献求助30
19秒前
科研通AI2S应助飘逸的雁梅采纳,获得10
20秒前
21秒前
Sofia完成签到 ,获得积分10
22秒前
夏侯觅风完成签到,获得积分10
23秒前
wanci应助Mian采纳,获得10
23秒前
文质彬彬发布了新的文献求助10
23秒前
酱油发布了新的文献求助30
24秒前
章鱼小丸子完成签到 ,获得积分10
24秒前
fagfagsf完成签到,获得积分10
25秒前
真实的蜜蜂完成签到,获得积分10
27秒前
28秒前
29秒前
sunshine应助科研通管家采纳,获得10
29秒前
华仔应助科研通管家采纳,获得10
29秒前
万能图书馆应助黄可以采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
30秒前
李健应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240186
求助须知:如何正确求助?哪些是违规求助? 2885221
关于积分的说明 8237360
捐赠科研通 2553498
什么是DOI,文献DOI怎么找? 1381664
科研通“疑难数据库(出版商)”最低求助积分说明 649317
邀请新用户注册赠送积分活动 625009