StyleMask: Disentangling the Style Space of StyleGAN2 for Neural Face Reenactment

身份(音乐) 计算机科学 面子(社会学概念) 人工智能 风格(视觉艺术) 编码(内存) 代表(政治) 推论 编码(集合论) 源代码 计算机视觉 空格(标点符号) 模式识别(心理学) 艺术 美学 社会科学 操作系统 文学类 集合(抽象数据类型) 社会学 政治 政治学 法学 程序设计语言
作者
Stella Bounareli,Christos Tzelepis,Vasileios Argyriou,Ioannis Patras,Georgios Tzimiropoulos
标识
DOI:10.1109/fg57933.2023.10042744
摘要

In this paper we address the problem of neural face reenactment, where, given a pair of a source and a target facial image, we need to transfer the target's pose (defined as the head pose and its facial expressions) to the source image, by preserving at the same time the source's identity characteristics (e.g., facial shape, hair style, etc), even in the challenging case where the source and the target faces belong to different identities. In doing so, we address some of the limitations of the state-of-the-art works, namely, a) that they depend on paired training data (i.e., source and target faces have the same identity), b) that they rely on labeled data during inference, and c) that they do not preserve identity in large head pose changes. More specifically, we propose a framework that, using unpaired randomly generated facial images, learns to disentangle the identity characteristics of the face from its pose by incorporating the recently introduced style space S [1] of StyleGAN2 [2], a latent representation space that exhibits remarkable disentanglement properties. By capitalizing on this, we learn to successfully mix a pair of source and target style codes using supervision from a 3D model. The resulting latent code, that is subsequently used for reenactment, consists of latent units corresponding to the facial pose of the target only and of units corresponding to the identity of the source only, leading to notable improvement in the reenactment performance compared to recent state-of-the-art methods. In comparison to state of the art, we quantitatively and qualitatively show that the proposed method produces higher quality results even on extreme pose variations. Finally, we report results on real images by first embedding them on the latent space of the pretrained generator. We make the code and the pretrained models publicly available at: https://github.com/StelaBou/StyleMask.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮云完成签到,获得积分10
2秒前
充电宝应助闪闪的屁股采纳,获得10
2秒前
yueoho发布了新的文献求助10
3秒前
小个完成签到,获得积分10
3秒前
若尘应助选择性哑巴采纳,获得10
4秒前
5秒前
ash发布了新的文献求助10
5秒前
含蓄垣完成签到,获得积分10
5秒前
wrh完成签到,获得积分10
6秒前
刻苦海豚发布了新的文献求助10
6秒前
Gauss应助一一采纳,获得30
7秒前
我一进来就看到常威在打来福完成签到,获得积分10
7秒前
谷粱紫槐发布了新的文献求助10
10秒前
ru123456发布了新的文献求助10
11秒前
键盘车神完成签到 ,获得积分10
12秒前
12秒前
赘婿应助hhp采纳,获得10
12秒前
听话的代芙完成签到 ,获得积分10
13秒前
脑洞疼应助含蓄垣采纳,获得10
13秒前
14秒前
T_MC郭完成签到,获得积分10
14秒前
17秒前
17秒前
17秒前
听话的代芙关注了科研通微信公众号
18秒前
yueoho完成签到,获得积分10
19秒前
19秒前
CodeCraft应助谷粱紫槐采纳,获得10
20秒前
20秒前
xxx发布了新的文献求助10
20秒前
北遇发布了新的文献求助10
22秒前
22秒前
一一完成签到,获得积分10
25秒前
Khaleel发布了新的文献求助10
25秒前
慕青应助KINDMAGIC采纳,获得10
25秒前
小李发布了新的文献求助10
26秒前
27秒前
cryscilla完成签到,获得积分10
28秒前
28秒前
ckz完成签到,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741430
求助须知:如何正确求助?哪些是违规求助? 3284094
关于积分的说明 10038212
捐赠科研通 3000880
什么是DOI,文献DOI怎么找? 1646852
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478