A Novel Flat Heat Pipe for Anti-Gravity Orientations and Space Flights: Leaf Fractal Evaporator and Bi-Directional Transport Capillary Channel

分形 毛细管作用 频道(广播) 热管 蒸发器 机械 空格(标点符号) 几何学 物理 数学 传热 工程类 气象学 数学分析 计算机科学 热力学 电气工程 热交换器 操作系统
作者
Weiwei Wang,Yong‐Juan Song,Bin Li,Di Liu,Fu-Yun Zhao,Yang Cai
标识
DOI:10.2139/ssrn.4333641
摘要

Flat heat pipes (FHPs) could be an innovative solution for thermal management in aerospace applications; without the aid of gravity, FHPs could still transport high density energy fluxes with superior temperature control and almost zero energy consumption. Inspired by the powerful transpiration and liquid transport ability of leaf vein structure of plants, a novel FHP design with bionic grading evaporator structured surface was proposed. In addition, a bi-directional transport capillary structure was built inside this FHP, reducing the vapor-liquid flow path and enhancing condensed liquid return simultaneously, and thereafter promoting phase change intensity of FHPs. In the present research, heat transfer performance of FHP with self-wetting fluid as a coolant has been experimentally investigated under anti-gravity, concerning on heat inputs, filling ratios, diameter ratios, porosities of hybrid capillary wick, and two representative tree-like evaporator plate structures (H type and Y type). Our experimental results indicated that heat transfer capability of FHP showed a minimal temperature difference, which was suitable for multi-gravity working conditions. Minimal thermal resistance value of 0.45 K/W and enhancement ratio in heat transfer coefficient of 61.4% were achieved simultaneously at anti-gravity orientations for a novel FHP with the 70 PPI and αMF=0.2 of hybrid capillary wick. Superior vapor diffusion and permeability capability of FHP were further obtained as filling ratio of 30%. Moreover, due to the Marangoni effect, the addition of SRWFs could reduce the axial and radial thermal resistance of the FHP by 5%~7% under anti-gravity condition. Compared with traditional heat sink, the novelty of this passive heat transfer application was capable for realizing high heat transport performance for aerospace flights and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
家家完成签到 ,获得积分10
1秒前
小牛同志完成签到,获得积分10
1秒前
1秒前
1秒前
西瓜霜完成签到 ,获得积分10
1秒前
深情安青应助aaaaa采纳,获得10
2秒前
2秒前
自由的过客完成签到,获得积分10
3秒前
转角一起走完成签到,获得积分20
3秒前
22完成签到,获得积分10
3秒前
3秒前
Zn应助伊丽莎白打工采纳,获得10
4秒前
江月渡完成签到,获得积分10
5秒前
研友_RLN0vZ发布了新的文献求助10
5秒前
虾仁发布了新的文献求助10
5秒前
mmx发布了新的文献求助10
5秒前
6秒前
ff发布了新的文献求助10
7秒前
图南完成签到,获得积分20
7秒前
zhl发布了新的文献求助10
7秒前
今后应助喜洋洋采纳,获得10
8秒前
赘婿应助yin采纳,获得10
8秒前
9秒前
9秒前
10秒前
邢夏之发布了新的文献求助10
10秒前
10秒前
欣喜书桃完成签到,获得积分10
11秒前
11秒前
陈木木完成签到,获得积分10
11秒前
刘旭阳发布了新的文献求助10
11秒前
11秒前
hhhhhhh发布了新的文献求助10
11秒前
长情洙完成签到,获得积分10
12秒前
Lilac完成签到 ,获得积分10
12秒前
12秒前
12秒前
MissXia完成签到,获得积分10
12秒前
NUNKI完成签到,获得积分10
12秒前
迅速星星完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759