Multimodal Remote Sensing Image Segmentation With Intuition-Inspired Hypergraph Modeling

计算机科学 超图 分割 人工智能 语义学(计算机科学) 模式识别(心理学) 数学 程序设计语言 离散数学
作者
Qibin He,Xian Sun,Wenhui Diao,Zhiyuan Yan,Fanglong Yao,Kun Fu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 1474-1487 被引量:38
标识
DOI:10.1109/tip.2023.3245324
摘要

Multi-modal remote sensing (RS) image segmentation aims to comprehensively utilize multiple RS modalities to assign pixel-level semantics to the studied scenes, which can provide a new perspective for global city understanding. Multi-modal segmentation inevitably encounters the challenge of modeling intra- and inter-modal relationships, i.e., object diversity and modal gaps. However, the previous methods are usually designed for a single RS modality, limited by the noisy collection environment and poor discrimination information. Neuropsychology and neuroanatomy confirm that the human brain performs the guiding perception and integrative cognition of multi-modal semantics through intuitive reasoning. Therefore, establishing a semantic understanding framework inspired by intuition to realize multi-modal RS segmentation becomes the main motivation of this work. Drived by the superiority of hypergraphs in modeling high-order relationships, we propose an intuition-inspired hypergraph network (I2HN) for multi-modal RS segmentation. Specifically, we present a hypergraph parser to imitate guiding perception to learn intra-modal object-wise relationships. It parses the input modality into irregular hypergraphs to mine semantic clues and generate robust mono-modal representations. In addition, we also design a hypergraph matcher to dynamically update the hypergraph structure from the explicit correspondence of visual concepts, similar to integrative cognition, to improve cross-modal compatibility when fusing multi-modal features. Extensive experiments on two multi-modal RS datasets show that the proposed I2HN outperforms the state-of-the-art models, achieving F1/mIoU accuracy 91.4%/82.9% on the ISPRS Vaihingen dataset, and 92.1%/84.2% on the MSAW dataset. The complete algorithm and benchmark results will be available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野菌发布了新的文献求助10
刚刚
AA完成签到,获得积分10
刚刚
anasy发布了新的文献求助10
1秒前
永远的北伦敦完成签到,获得积分10
2秒前
yyy发布了新的文献求助10
3秒前
Ava应助bernie1023采纳,获得10
4秒前
6秒前
6秒前
Yy完成签到 ,获得积分10
8秒前
9秒前
Lucas发布了新的文献求助10
11秒前
库库里里大完成签到,获得积分10
13秒前
U9A发布了新的文献求助10
13秒前
13秒前
胖胖不怕胖完成签到,获得积分10
13秒前
在水一方应助卢静静采纳,获得10
14秒前
金爬虫发布了新的文献求助10
15秒前
炙热听枫发布了新的文献求助10
16秒前
16秒前
汉堡包应助禮貌采纳,获得10
17秒前
18秒前
风轻云淡发布了新的文献求助20
19秒前
姜姜完成签到 ,获得积分10
20秒前
21秒前
万能图书馆应助QQ采纳,获得10
21秒前
23秒前
Jaime发布了新的文献求助10
23秒前
华仔应助魔幻安筠采纳,获得10
24秒前
222关闭了222文献求助
24秒前
24秒前
25秒前
思源应助run采纳,获得10
25秒前
fairy完成签到,获得积分10
25秒前
JCX完成签到,获得积分20
26秒前
萧水白应助泯工采纳,获得10
27秒前
思源应助黄文怡采纳,获得10
28秒前
loong完成签到,获得积分10
28秒前
哈哈哈发布了新的文献求助10
28秒前
QQWRV完成签到,获得积分10
28秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578