亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FaxMatch: Multi‐Curriculum Pseudo‐Labeling for semi‐supervised medical image classification

计算机科学 人工智能 医学影像学 水准点(测量) 班级(哲学) 机器学习 平滑的 模式识别(心理学) 半监督学习 图像(数学) 上下文图像分类 计算机视觉 大地测量学 地理
作者
Zhen Peng,Dezhi Zhang,Shengwei Tian,Weidong Wu,Long Yu,Shaofeng Zhou,Shanhang Huang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3210-3222 被引量:5
标识
DOI:10.1002/mp.16312
摘要

Abstract Background Semi‐supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo‐labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo‐labels and then uses the generated pseudo‐labels to train the model. Most of the current pseudo‐label‐based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. Purpose However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo‐labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. Methods In this work, we propose Multi‐Curriculum Pseudo‐Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo‐labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo‐labels. Results We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID‐CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state‐of‐the‐art methods. Conclusions We propose MCPL and construct a semi‐supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lin.xy完成签到,获得积分10
3秒前
带虾的烧麦完成签到,获得积分10
4秒前
勤恳冰淇淋完成签到 ,获得积分10
17秒前
柯善鹏发布了新的文献求助10
21秒前
a7662888发布了新的文献求助30
33秒前
Boffican完成签到,获得积分20
48秒前
a7662888完成签到,获得积分0
53秒前
57秒前
1分钟前
李李发布了新的文献求助10
1分钟前
李李完成签到,获得积分20
1分钟前
ymr完成签到 ,获得积分10
1分钟前
1分钟前
仔wang完成签到,获得积分10
1分钟前
烟花应助李李采纳,获得10
1分钟前
呵呵发布了新的文献求助10
1分钟前
不能随便完成签到,获得积分10
1分钟前
清脆的绮梅完成签到 ,获得积分20
1分钟前
lorentzh完成签到,获得积分10
1分钟前
呵呵完成签到 ,获得积分10
1分钟前
威武灵阳完成签到,获得积分10
1分钟前
谨慎的友安完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
木子木发布了新的文献求助10
2分钟前
2分钟前
星辰大海应助粗心的新之采纳,获得10
2分钟前
zy95282应助13采纳,获得30
2分钟前
999完成签到 ,获得积分10
2分钟前
环走鱼尾纹完成签到 ,获得积分10
2分钟前
Kunning完成签到 ,获得积分10
2分钟前
今后应助专注的寒香采纳,获得30
2分钟前
只要平凡发布了新的文献求助10
2分钟前
glemy完成签到,获得积分20
2分钟前
星之芋完成签到,获得积分10
2分钟前
slayers应助科研通管家采纳,获得10
2分钟前
dong应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994995
求助须知:如何正确求助?哪些是违规求助? 3535103
关于积分的说明 11267066
捐赠科研通 3274866
什么是DOI,文献DOI怎么找? 1806498
邀请新用户注册赠送积分活动 883335
科研通“疑难数据库(出版商)”最低求助积分说明 809764