FaxMatch: Multi‐Curriculum Pseudo‐Labeling for semi‐supervised medical image classification

计算机科学 人工智能 医学影像学 水准点(测量) 班级(哲学) 机器学习 平滑的 模式识别(心理学) 半监督学习 图像(数学) 上下文图像分类 计算机视觉 大地测量学 地理
作者
Zhen Peng,Dezhi Zhang,Shengwei Tian,Weidong Wu,Long Yu,Shaofeng Zhou,Shanhang Huang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3210-3222 被引量:8
标识
DOI:10.1002/mp.16312
摘要

Abstract Background Semi‐supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo‐labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo‐labels and then uses the generated pseudo‐labels to train the model. Most of the current pseudo‐label‐based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. Purpose However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo‐labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. Methods In this work, we propose Multi‐Curriculum Pseudo‐Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo‐labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo‐labels. Results We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID‐CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state‐of‐the‐art methods. Conclusions We propose MCPL and construct a semi‐supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
2秒前
亚胺培南西司他丁钠完成签到 ,获得积分10
2秒前
3秒前
3秒前
zhengguibin完成签到 ,获得积分10
4秒前
11完成签到,获得积分10
4秒前
大龙哥886应助hAFMET采纳,获得10
5秒前
大吉完成签到,获得积分10
6秒前
上官若男应助katsuras采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
愉快板凳发布了新的文献求助20
8秒前
休比里斯老板完成签到,获得积分10
9秒前
乐乐应助hyf采纳,获得10
10秒前
wow发布了新的文献求助10
11秒前
脑洞疼应助senli2018采纳,获得10
13秒前
郑力阳完成签到,获得积分10
13秒前
端庄南莲发布了新的文献求助10
13秒前
华仔应助害羞冰蓝采纳,获得10
14秒前
Hello应助百里烬言采纳,获得30
16秒前
情怀应助剑来采纳,获得10
17秒前
17秒前
wzc发布了新的文献求助10
18秒前
温暖伟祺完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
20秒前
21秒前
万能图书馆应助汪金采纳,获得10
21秒前
PhDL1发布了新的文献求助10
21秒前
Flllllll完成签到,获得积分10
22秒前
wuzhen1996完成签到,获得积分10
22秒前
23秒前
Henvy发布了新的文献求助10
24秒前
24秒前
wuzhen1996发布了新的文献求助10
25秒前
25秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421305
求助须知:如何正确求助?哪些是违规求助? 4536294
关于积分的说明 14153173
捐赠科研通 4452894
什么是DOI,文献DOI怎么找? 2442643
邀请新用户注册赠送积分活动 1434026
关于科研通互助平台的介绍 1411219