FaxMatch: Multi‐Curriculum Pseudo‐Labeling for semi‐supervised medical image classification

计算机科学 人工智能 医学影像学 水准点(测量) 班级(哲学) 机器学习 平滑的 模式识别(心理学) 半监督学习 图像(数学) 上下文图像分类 计算机视觉 大地测量学 地理
作者
Zhen Peng,Dezhi Zhang,Shengwei Tian,Weidong Wu,Long Yu,Shaofeng Zhou,Shanhang Huang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3210-3222 被引量:5
标识
DOI:10.1002/mp.16312
摘要

Abstract Background Semi‐supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo‐labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo‐labels and then uses the generated pseudo‐labels to train the model. Most of the current pseudo‐label‐based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. Purpose However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo‐labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. Methods In this work, we propose Multi‐Curriculum Pseudo‐Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo‐labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo‐labels. Results We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID‐CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state‐of‐the‐art methods. Conclusions We propose MCPL and construct a semi‐supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lhhhh完成签到,获得积分10
刚刚
布丁应助ying采纳,获得10
1秒前
浮游应助ying采纳,获得10
1秒前
1秒前
1秒前
iNk应助淡然柚子采纳,获得10
1秒前
will发布了新的文献求助10
1秒前
宇文青寒发布了新的文献求助20
2秒前
赘婿应助海豚的盆友采纳,获得10
2秒前
明亮的藏花完成签到,获得积分10
2秒前
土豆子关注了科研通微信公众号
2秒前
酷波er应助JAU采纳,获得10
3秒前
阿湫发布了新的文献求助10
3秒前
FashionBoy应助楚昕越采纳,获得50
3秒前
幽默的老虎应助kmkz采纳,获得10
3秒前
安静一曲完成签到 ,获得积分10
3秒前
3秒前
FashionBoy应助朝茗森采纳,获得10
3秒前
4秒前
拼搏煎蛋发布了新的文献求助10
4秒前
小文殊发布了新的文献求助10
4秒前
NameSL发布了新的文献求助10
4秒前
好卉完成签到 ,获得积分10
4秒前
4秒前
领导范儿应助GAOBIN000采纳,获得10
4秒前
邓佳鑫Alan应助xlogeman采纳,获得10
5秒前
5秒前
YYYY完成签到,获得积分10
5秒前
熙悦发布了新的文献求助10
5秒前
张云扬完成签到 ,获得积分10
6秒前
浮游应助派提克采纳,获得10
6秒前
6秒前
我是中国人完成签到,获得积分10
6秒前
6秒前
7秒前
bkagyin应助surain采纳,获得10
7秒前
zangzyn完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
胜天半子发布了新的文献求助10
8秒前
英姑应助大方的白桃采纳,获得10
8秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5119112
求助须知:如何正确求助?哪些是违规求助? 4324929
关于积分的说明 13474611
捐赠科研通 4158140
什么是DOI,文献DOI怎么找? 2278807
邀请新用户注册赠送积分活动 1280560
关于科研通互助平台的介绍 1219303