FaxMatch: Multi‐Curriculum Pseudo‐Labeling for semi‐supervised medical image classification

计算机科学 人工智能 医学影像学 水准点(测量) 班级(哲学) 机器学习 平滑的 模式识别(心理学) 半监督学习 图像(数学) 上下文图像分类 计算机视觉 大地测量学 地理
作者
Zhen Peng,Dezhi Zhang,Shengwei Tian,Weidong Wu,Long Yu,Shaofeng Zhou,Shanhang Huang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3210-3222 被引量:5
标识
DOI:10.1002/mp.16312
摘要

Abstract Background Semi‐supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo‐labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo‐labels and then uses the generated pseudo‐labels to train the model. Most of the current pseudo‐label‐based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. Purpose However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo‐labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. Methods In this work, we propose Multi‐Curriculum Pseudo‐Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo‐labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo‐labels. Results We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID‐CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state‐of‐the‐art methods. Conclusions We propose MCPL and construct a semi‐supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研一小刘完成签到,获得积分10
刚刚
善良的路灯完成签到,获得积分10
1秒前
uu发布了新的文献求助10
1秒前
2秒前
易烊千玺发布了新的文献求助10
3秒前
请叫我风吹麦浪应助HJJHJH采纳,获得20
3秒前
ZBN发布了新的文献求助10
3秒前
3秒前
善学以致用应助123采纳,获得10
5秒前
5秒前
6秒前
AFEUWOS01发布了新的文献求助30
6秒前
星辰大海应助Left采纳,获得10
6秒前
sansan发布了新的文献求助10
7秒前
哈哈哈完成签到,获得积分10
7秒前
科研通AI5应助DTT采纳,获得10
8秒前
8秒前
9秒前
坚强不言完成签到,获得积分10
9秒前
9秒前
小天应助善良的路灯采纳,获得30
10秒前
10秒前
脑洞疼应助yigu采纳,获得10
11秒前
11秒前
Hu完成签到 ,获得积分10
13秒前
liuyan432完成签到,获得积分10
13秒前
cc完成签到,获得积分10
13秒前
易烊千玺完成签到,获得积分20
13秒前
哒哒哒哒完成签到,获得积分10
13秒前
14秒前
李健应助陶醉觅夏采纳,获得10
15秒前
15秒前
独特凡松完成签到,获得积分10
15秒前
木笔朱瑾完成签到 ,获得积分10
16秒前
Rinohalt完成签到,获得积分10
16秒前
17秒前
孙梁子完成签到,获得积分10
17秒前
核桃花生奶兔完成签到 ,获得积分10
18秒前
请叫我风吹麦浪应助HJJHJH采纳,获得10
19秒前
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794