已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

FaxMatch: Multi‐Curriculum Pseudo‐Labeling for semi‐supervised medical image classification

计算机科学 人工智能 医学影像学 水准点(测量) 班级(哲学) 机器学习 平滑的 模式识别(心理学) 半监督学习 图像(数学) 上下文图像分类 计算机视觉 大地测量学 地理
作者
Zhen Peng,Dezhi Zhang,Shengwei Tian,Weidong Wu,Long Yu,Shaofeng Zhou,Shanhang Huang
出处
期刊:Medical Physics [Wiley]
卷期号:50 (5): 3210-3222 被引量:8
标识
DOI:10.1002/mp.16312
摘要

Abstract Background Semi‐supervised learning (SSL) can effectively use information from unlabeled data to improve model performance, which has great significance in medical imaging tasks. Pseudo‐labeling is a classical SSL method that uses a model to predict unlabeled samples and selects the prediction with the highest confidence level as the pseudo‐labels and then uses the generated pseudo‐labels to train the model. Most of the current pseudo‐label‐based SSL algorithms use predefined fixed thresholds for all classes to select unlabeled data. Purpose However, data imbalance is a common problem in medical image tasks, where the use of fixed threshold to generate pseudo‐labels ignores different classes of learning status and learning difficulties. The aim of this study is to develop an algorithm to solve this problem. Methods In this work, we propose Multi‐Curriculum Pseudo‐Labeling (MCPL), which evaluates the learning status of the model for each class at each epoch and automatically adjusts the thresholds for each class. We apply MCPL to FixMatch and propose a new SSL framework for medical image classification, which we call the improved algorithm FaxMatch. To mitigate the impact of incorrect pseudo‐labels on the model, we use label smoothing (LS) strategy to generate soft labels (SL) for pseudo‐labels. Results We have conducted extensive experiments to evaluate our method on two public benchmark medical image classification datasets: the ISIC 2018 skin lesion analysis and COVID‐CT datasets. Experimental results show that our method outperforms fully supervised baseline, which uses only labeled data to train the model. Moreover, our method also outperforms other state‐of‐the‐art methods. Conclusions We propose MCPL and construct a semi‐supervised medical image classification framework to reduce the reliance of the model on a large number of labeled images and reduce the manual workload of labeling medical image data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangyan完成签到,获得积分20
1秒前
Corundum发布了新的文献求助20
6秒前
8秒前
辉夜折影完成签到,获得积分10
9秒前
共享精神应助shane采纳,获得10
12秒前
小付发布了新的文献求助10
13秒前
姜姜完成签到 ,获得积分10
17秒前
17秒前
汪鸡毛完成签到 ,获得积分10
18秒前
床头经济学完成签到,获得积分10
18秒前
19秒前
小付完成签到,获得积分10
20秒前
20秒前
Lemon发布了新的文献求助10
23秒前
23秒前
23秒前
26秒前
ding应助喜悦的如娆采纳,获得10
28秒前
ding应助中学分子采纳,获得10
29秒前
plotu完成签到,获得积分10
31秒前
ljx完成签到 ,获得积分10
32秒前
小骄傲完成签到,获得积分10
33秒前
35秒前
utopia发布了新的文献求助30
39秒前
40秒前
41秒前
Zilch发布了新的文献求助10
42秒前
玉沐沐完成签到 ,获得积分10
44秒前
45秒前
坐雨赏花完成签到 ,获得积分10
46秒前
47秒前
橙子发布了新的文献求助10
47秒前
阿梅梅梅发布了新的文献求助10
48秒前
shareef发布了新的文献求助10
48秒前
utopia完成签到,获得积分10
49秒前
50秒前
50秒前
虚幻笑晴发布了新的文献求助10
51秒前
追寻夜香发布了新的文献求助30
51秒前
猫也不知道完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564728
关于积分的说明 14296793
捐赠科研通 4489783
什么是DOI,文献DOI怎么找? 2459293
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511