FedMDS: An Efficient Model Discrepancy-Aware Semi-Asynchronous Clustered Federated Learning Framework

异步通信 计算机科学 符号 趋同(经济学) 分布式计算 计算机网络 数学 经济增长 算术 经济
作者
Yu Zhang,Duo Liu,Moming Duan,Li Li,Xianzhang Chen,Ao Ren,Yujuan Tan,Chengliang Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1007-1019 被引量:23
标识
DOI:10.1109/tpds.2023.3237752
摘要

Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are the high precision and easy convergence of the model. However, this synchronous communication strategy has the risk of the straggler effect. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. In this paper, we propose a model discrepancy-aware semi-asynchronous clustered FL framework, FedMDS , which alleviates the straggler effect by 1) a clustered strategy based on the delay and direction of the model update and 2) a synchronous trigger mechanism that limits the model staleness. FedMDS leverages the clustered algorithm to reschedule the clients. Each group of clients performs asynchronous updates until the synchronous update mechanism based on the model discrepancy is triggered. We evaluate FedMDS based on four typical federated datasets in a non-IID setting and compare FedMDS to the baselines. The experimental results show that FedMDS significantly improves average test accuracy by more than $+9.2\%$ on the four datasets compared to TA-FedAvg . In particular, FedMDS improves absolute Top-1 test accuracy by $+37.6\%$ on FEMNIST compared to TA-FedAvg . The frequency of the average synchronization waiting time of FedMDS is significantly lower than that of TA-FedAvg on all datasets. Moreover, FedMDS can improve the accuracy and alleviate the straggler effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默凡桃完成签到,获得积分10
1秒前
1秒前
OKOK发布了新的文献求助10
2秒前
云朵发布了新的文献求助10
3秒前
4秒前
苞大米发布了新的文献求助10
5秒前
5秒前
沉默凡桃发布了新的文献求助10
5秒前
xuk完成签到,获得积分10
7秒前
大个应助轻松砖头采纳,获得10
8秒前
8秒前
英勇的绿海完成签到,获得积分10
10秒前
hanye发布了新的文献求助10
11秒前
MchemG应助庾觅松采纳,获得30
12秒前
小二郎应助ADGAI采纳,获得10
13秒前
那年的伟哥应助玖Nine采纳,获得10
13秒前
大模型应助玖Nine采纳,获得10
13秒前
哈哈哈发布了新的文献求助10
15秒前
健壮不斜完成签到 ,获得积分10
18秒前
爆米花应助Leoling采纳,获得10
19秒前
illusion完成签到,获得积分10
20秒前
blingbling完成签到,获得积分10
20秒前
21秒前
FashionBoy应助bofu采纳,获得10
21秒前
24秒前
25秒前
bkagyin应助小束爱吃樱桃采纳,获得10
26秒前
27秒前
27秒前
yang发布了新的文献求助10
27秒前
英姑应助无辜秋珊采纳,获得10
28秒前
ADGAI发布了新的文献求助10
29秒前
30秒前
苞大米完成签到,获得积分10
30秒前
31秒前
Akim应助bofu采纳,获得20
33秒前
11发布了新的文献求助10
34秒前
超级的西装完成签到 ,获得积分20
35秒前
解语花发布了新的文献求助30
35秒前
36秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979648
求助须知:如何正确求助?哪些是违规求助? 3523618
关于积分的说明 11218147
捐赠科研通 3261119
什么是DOI,文献DOI怎么找? 1800416
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807167