亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedMDS: An Efficient Model Discrepancy-Aware Semi-Asynchronous Clustered Federated Learning Framework

异步通信 计算机科学 符号 趋同(经济学) 计算机网络 数学 经济增长 算术 经济
作者
Yu Zhang,Duo Liu,Moming Duan,Li Li,Xianzhang Chen,Ao Ren,Yujuan Tan,Chengliang Wang
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (3): 1007-1019 被引量:10
标识
DOI:10.1109/tpds.2023.3237752
摘要

Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. The advantages of synchronous FL are the high precision and easy convergence of the model. However, this synchronous communication strategy has the risk of the straggler effect. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. In this paper, we propose a model discrepancy-aware semi-asynchronous clustered FL framework, FedMDS , which alleviates the straggler effect by 1) a clustered strategy based on the delay and direction of the model update and 2) a synchronous trigger mechanism that limits the model staleness. FedMDS leverages the clustered algorithm to reschedule the clients. Each group of clients performs asynchronous updates until the synchronous update mechanism based on the model discrepancy is triggered. We evaluate FedMDS based on four typical federated datasets in a non-IID setting and compare FedMDS to the baselines. The experimental results show that FedMDS significantly improves average test accuracy by more than $+9.2\%$ on the four datasets compared to TA-FedAvg . In particular, FedMDS improves absolute Top-1 test accuracy by $+37.6\%$ on FEMNIST compared to TA-FedAvg . The frequency of the average synchronization waiting time of FedMDS is significantly lower than that of TA-FedAvg on all datasets. Moreover, FedMDS can improve the accuracy and alleviate the straggler effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
小王完成签到 ,获得积分10
13秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
29秒前
42秒前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
192724836发布了新的文献求助10
2分钟前
2分钟前
Easypass完成签到 ,获得积分10
2分钟前
慕青应助dihaha采纳,获得10
2分钟前
烟花应助Leo采纳,获得10
3分钟前
dihaha完成签到,获得积分10
3分钟前
Herbs完成签到 ,获得积分10
3分钟前
FashionBoy应助dihaha采纳,获得10
3分钟前
zqq完成签到,获得积分0
3分钟前
脑洞疼应助十三采纳,获得10
3分钟前
192724836完成签到,获得积分20
3分钟前
小锤发布了新的文献求助10
3分钟前
含蓄的寄翠完成签到,获得积分10
3分钟前
科研通AI2S应助192724836采纳,获得10
3分钟前
tinyliiyong完成签到,获得积分10
3分钟前
3分钟前
sss完成签到 ,获得积分10
4分钟前
小锤完成签到 ,获得积分20
4分钟前
李爱国应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
彭于晏应助十三采纳,获得10
4分钟前
布同完成签到,获得积分10
4分钟前
4分钟前
林思完成签到,获得积分10
4分钟前
老王家的二姑娘完成签到 ,获得积分10
4分钟前
平常的长颈鹿完成签到,获得积分10
4分钟前
852应助平常的长颈鹿采纳,获得10
5分钟前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072598
求助须知:如何正确求助?哪些是违规求助? 2726326
关于积分的说明 7493683
捐赠科研通 2374098
什么是DOI,文献DOI怎么找? 1258887
科研通“疑难数据库(出版商)”最低求助积分说明 610394
版权声明 596983