电解质
锂(药物)
阳极
溶剂
离子
电导率
电池(电)
钝化
溶剂化
石墨
插层(化学)
材料科学
扩散
离子电导率
碳酸二甲酯
化学
电化学
碳酸乙烯酯
无机化学
纳米技术
化学工程
有机化学
物理
物理化学
电极
催化作用
热力学
工程类
内分泌学
医学
功率(物理)
图层(电子)
复合材料
作者
Xiaoteng Huang,Ruhong Li,Chuangchao Sun,Haikuo Zhang,Shuo‐Qing Zhang,Ling Lv,Yiqiang Huang,Li‐Wu Fan,Lixin Chen,Malachi Noked,Xiulin Fan
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2022-10-18
卷期号:7 (11): 3947-3957
被引量:21
标识
DOI:10.1021/acsenergylett.2c02240
摘要
Fast charging is regarded as one of the most coveted technologies for commercial Li-ion batteries (LIBs), but the lack of suitable electrolytes with sufficient ionic conductivity and effective passivation properties hinders its development. Herein, we designed a mixed-solvent electrolyte (1 M LiPF6 in fluoroethylene carbonate/acetonitrile, FEC/AN, 7/3 by vol.) to overcome these two limitations by achieving an FEC-dominated solvation structure and an AN-rich environment. The specific AN-assisted Li+ hopping transport behavior shortens the Li+ diffusion time, doubling the ionic conductivity to 12 mS cm–1, thus endowing the graphite anode with >300 mAh g–1 at 20C and reversible (de)intercalation over a wide temperature range (from −20 to +60 °C). Furthermore, the designed electrolyte triples the capacity of the 1 Ah graphite||LiNi0.8Mn0.1Co0.1O2 (NMC811) pouch cells at 8C in comparison with the commercial electrolyte. The solvent-assisted hopping mechanism maximizes the fast-charging capability of the electrolytes, which motivates further research toward viable next-generation high-energy LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI