1D-DGAN-PHM: A 1-D denoising GAN for Prognostics and Health Management with an application to turbofan

预言 鉴别器 涡扇发动机 噪音(视频) 发电机(电路理论) 降噪 计算机科学 人工智能 信号(编程语言) 模式识别(心理学) 工程类 探测器 数据挖掘 汽车工程 功率(物理) 电信 图像(数学) 物理 程序设计语言 量子力学
作者
Márcia Baptista,Elsa Henriques
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:131: 109785-109785 被引量:10
标识
DOI:10.1016/j.asoc.2022.109785
摘要

The performance of prognostics is closely related to the quality of condition monitoring signals (e.g., temperature, pressure, or vibration signals), which reveal the degradation of the system of interest. However, typical condition monitoring signals include noise and outliers. Disentangling noise from these signals is essential to obtain the actual degradation trajectories. Different denoising methods have been proposed in prognostics. Conventional denoising methods have low complexity but usually do not preserve edge information and do not involve physical considerations. A promising deep learning approach is denoising generative models. This approach is popular in Computer Vision, which has been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy and noise-free trajectories. The network consists of two components, a denoising generator and a discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator guides the learning by comparing noise-free signals with signals from the denoising generator. Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw signals derived from NASA's C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the 1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random Forest. The code is publicly available at 1D-DGAN-PHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心超人完成签到,获得积分10
1秒前
无限冰旋发布了新的文献求助10
1秒前
2秒前
会武功的阿吉完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
ixueyi发布了新的文献求助10
6秒前
专注棒棒糖完成签到 ,获得积分10
7秒前
7秒前
粥粥完成签到 ,获得积分10
9秒前
11秒前
顺心微笑发布了新的文献求助10
12秒前
14秒前
核桃应助mmyhn采纳,获得10
15秒前
自由能发布了新的文献求助10
16秒前
CC发布了新的文献求助10
18秒前
Moi关闭了Moi文献求助
20秒前
十分喜欢发布了新的文献求助10
21秒前
家伟发布了新的文献求助20
21秒前
慕青应助自由能采纳,获得10
22秒前
无限冰旋完成签到,获得积分10
23秒前
23秒前
24秒前
喵喵喵喵喵喵喵完成签到,获得积分10
26秒前
26秒前
kk发布了新的文献求助30
28秒前
不发SCI不罢休的小菜完成签到 ,获得积分20
28秒前
Akim应助zs采纳,获得10
29秒前
自由能完成签到,获得积分20
31秒前
31秒前
Torment发布了新的文献求助10
31秒前
31秒前
阿楠完成签到,获得积分10
34秒前
35秒前
orixero应助科研通管家采纳,获得10
37秒前
无花果应助科研通管家采纳,获得10
37秒前
英姑应助科研通管家采纳,获得10
37秒前
慕青应助科研通管家采纳,获得10
37秒前
充电宝应助科研通管家采纳,获得10
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
顾矜应助科研通管家采纳,获得50
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954469
求助须知:如何正确求助?哪些是违规求助? 3500461
关于积分的说明 11099572
捐赠科研通 3230989
什么是DOI,文献DOI怎么找? 1786217
邀请新用户注册赠送积分活动 869884
科研通“疑难数据库(出版商)”最低求助积分说明 801713