预言
鉴别器
涡扇发动机
噪音(视频)
发电机(电路理论)
降噪
计算机科学
人工智能
信号(编程语言)
模式识别(心理学)
工程类
探测器
数据挖掘
汽车工程
功率(物理)
电信
图像(数学)
物理
程序设计语言
量子力学
作者
Márcia Baptista,Elsa Henriques
标识
DOI:10.1016/j.asoc.2022.109785
摘要
The performance of prognostics is closely related to the quality of condition monitoring signals (e.g., temperature, pressure, or vibration signals), which reveal the degradation of the system of interest. However, typical condition monitoring signals include noise and outliers. Disentangling noise from these signals is essential to obtain the actual degradation trajectories. Different denoising methods have been proposed in prognostics. Conventional denoising methods have low complexity but usually do not preserve edge information and do not involve physical considerations. A promising deep learning approach is denoising generative models. This approach is popular in Computer Vision, which has been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy and noise-free trajectories. The network consists of two components, a denoising generator and a discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator guides the learning by comparing noise-free signals with signals from the denoising generator. Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw signals derived from NASA's C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the 1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random Forest. The code is publicly available at 1D-DGAN-PHM.
科研通智能强力驱动
Strongly Powered by AbleSci AI