1D-DGAN-PHM: A 1-D denoising GAN for Prognostics and Health Management with an application to turbofan

预言 鉴别器 涡扇发动机 噪音(视频) 发电机(电路理论) 降噪 计算机科学 人工智能 信号(编程语言) 模式识别(心理学) 工程类 探测器 数据挖掘 汽车工程 功率(物理) 电信 图像(数学) 程序设计语言 物理 量子力学
作者
Márcia Baptista,Elsa Henriques
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109785-109785 被引量:10
标识
DOI:10.1016/j.asoc.2022.109785
摘要

The performance of prognostics is closely related to the quality of condition monitoring signals (e.g., temperature, pressure, or vibration signals), which reveal the degradation of the system of interest. However, typical condition monitoring signals include noise and outliers. Disentangling noise from these signals is essential to obtain the actual degradation trajectories. Different denoising methods have been proposed in prognostics. Conventional denoising methods have low complexity but usually do not preserve edge information and do not involve physical considerations. A promising deep learning approach is denoising generative models. This approach is popular in Computer Vision, which has been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy and noise-free trajectories. The network consists of two components, a denoising generator and a discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator guides the learning by comparing noise-free signals with signals from the denoising generator. Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw signals derived from NASA's C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the 1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random Forest. The code is publicly available at 1D-DGAN-PHM.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Bizibili完成签到,获得积分10
2秒前
3秒前
11完成签到,获得积分10
3秒前
xyzdmmm完成签到,获得积分10
4秒前
无花果应助帅气诗槐采纳,获得10
4秒前
果汁橡皮糖完成签到,获得积分10
5秒前
拿拿发布了新的文献求助10
5秒前
核桃发布了新的文献求助10
5秒前
6秒前
小菜鸟发布了新的文献求助10
6秒前
韩豆乐发布了新的文献求助10
6秒前
嗷嗷嗷发布了新的文献求助10
8秒前
8秒前
艾欧勾勾完成签到 ,获得积分10
8秒前
李爱国应助默默的威采纳,获得10
9秒前
BowieHuang应助果汁橡皮糖采纳,获得10
9秒前
BowieHuang应助果汁橡皮糖采纳,获得10
9秒前
大个应助LLL采纳,获得10
9秒前
cjfc发布了新的文献求助10
11秒前
11秒前
andy6680完成签到,获得积分20
12秒前
叶轮机械完成签到,获得积分10
13秒前
领导范儿应助1212采纳,获得20
13秒前
13秒前
电池小白发布了新的文献求助10
14秒前
西因应助不懈奋进采纳,获得10
14秒前
15秒前
帅气诗槐发布了新的文献求助10
17秒前
sugar发布了新的文献求助20
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
why发布了新的文献求助10
21秒前
21秒前
小菜鸟完成签到,获得积分10
22秒前
23秒前
wb发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602782
求助须知:如何正确求助?哪些是违规求助? 4687876
关于积分的说明 14851686
捐赠科研通 4685453
什么是DOI,文献DOI怎么找? 2540122
邀请新用户注册赠送积分活动 1506835
关于科研通互助平台的介绍 1471450