1D-DGAN-PHM: A 1-D denoising GAN for Prognostics and Health Management with an application to turbofan

预言 鉴别器 涡扇发动机 噪音(视频) 发电机(电路理论) 降噪 计算机科学 人工智能 信号(编程语言) 模式识别(心理学) 工程类 探测器 数据挖掘 汽车工程 功率(物理) 电信 图像(数学) 物理 程序设计语言 量子力学
作者
Márcia Baptista,Elsa Henriques
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109785-109785 被引量:10
标识
DOI:10.1016/j.asoc.2022.109785
摘要

The performance of prognostics is closely related to the quality of condition monitoring signals (e.g., temperature, pressure, or vibration signals), which reveal the degradation of the system of interest. However, typical condition monitoring signals include noise and outliers. Disentangling noise from these signals is essential to obtain the actual degradation trajectories. Different denoising methods have been proposed in prognostics. Conventional denoising methods have low complexity but usually do not preserve edge information and do not involve physical considerations. A promising deep learning approach is denoising generative models. This approach is popular in Computer Vision, which has been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy and noise-free trajectories. The network consists of two components, a denoising generator and a discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator guides the learning by comparing noise-free signals with signals from the denoising generator. Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw signals derived from NASA's C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the 1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random Forest. The code is publicly available at 1D-DGAN-PHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助YANGJIE6采纳,获得10
3秒前
4秒前
huanglihong完成签到,获得积分20
5秒前
领导范儿应助卡司采纳,获得10
5秒前
aa1718完成签到,获得积分20
5秒前
困困咪应助kuka007采纳,获得10
7秒前
梨小7完成签到,获得积分10
9秒前
共享精神应助Xppcjlan采纳,获得10
12秒前
pluto应助科研通管家采纳,获得50
13秒前
pluto应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
梨小7发布了新的文献求助10
15秒前
16秒前
sss完成签到,获得积分10
16秒前
彭于彦祖应助阿离采纳,获得30
16秒前
科研通AI2S应助黄小强采纳,获得10
16秒前
17秒前
苹果巧蕊完成签到 ,获得积分10
20秒前
20秒前
xiaodaiduyan发布了新的文献求助10
24秒前
tracey完成签到 ,获得积分10
24秒前
24秒前
随风完成签到,获得积分10
26秒前
给我一颗糖完成签到,获得积分10
26秒前
iuhgnor发布了新的文献求助10
26秒前
27秒前
在水一方应助Tang采纳,获得10
29秒前
30秒前
18发布了新的文献求助10
31秒前
沉默哈密瓜完成签到 ,获得积分10
31秒前
万从灵应助lirongcas采纳,获得10
35秒前
orixero应助科研小白采纳,获得10
35秒前
Tang完成签到,获得积分10
35秒前
搜集达人应助漂亮白枫采纳,获得10
37秒前
18完成签到,获得积分10
37秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578