1D-DGAN-PHM: A 1-D denoising GAN for Prognostics and Health Management with an application to turbofan

预言 鉴别器 涡扇发动机 噪音(视频) 发电机(电路理论) 降噪 计算机科学 人工智能 信号(编程语言) 模式识别(心理学) 工程类 探测器 数据挖掘 汽车工程 功率(物理) 电信 图像(数学) 物理 程序设计语言 量子力学
作者
Márcia Baptista,Elsa Henriques
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:131: 109785-109785 被引量:10
标识
DOI:10.1016/j.asoc.2022.109785
摘要

The performance of prognostics is closely related to the quality of condition monitoring signals (e.g., temperature, pressure, or vibration signals), which reveal the degradation of the system of interest. However, typical condition monitoring signals include noise and outliers. Disentangling noise from these signals is essential to obtain the actual degradation trajectories. Different denoising methods have been proposed in prognostics. Conventional denoising methods have low complexity but usually do not preserve edge information and do not involve physical considerations. A promising deep learning approach is denoising generative models. This approach is popular in Computer Vision, which has been shown to outperform other classical techniques but has seldom been used in prognostics on 1-D signals. In this paper, we propose the 1-D Denoising Generative Adversarial Network for Prognostics and Health Management (1D-DGAN-PHM). The 1D-DGAN-PHM is trained on synthetic data generated by a custom data generator that infuses physics-of-failure knowledge in paired samples of noisy and noise-free trajectories. The network consists of two components, a denoising generator and a discriminator. The denoising generator aims to learn to denoise a 1-D input signal. The discriminator guides the learning by comparing noise-free signals with signals from the denoising generator. Advantages of the 1D-DGAN-PHM include the physics-of-failure information in the synthetic data generator and the model sophistication. In this work, we apply the 1D-DGAN-PHM to denoise the raw signals derived from NASA's C-MAPSS simulator of an aircraft turbofan engine. Baseline methods are Moving Average, Median filter, Savitzky–Golay filter, and a denoising autoencoder. The 1D-DGAN-PHM produces smooth trajectories and preserves the initial linear degradation of the signals. The 1D-DGAN-PHM has the most significant improvement in prognosability (on average, 0.73 to 0.81). Data from the 1D-DGAN-PHM resulted in the best MAE (29 to 25 cycles) and RMSE (score of 39 to 36) for a Random Forest. The code is publicly available at 1D-DGAN-PHM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
xcgh应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得50
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得20
1秒前
1秒前
6666666666完成签到,获得积分10
1秒前
1秒前
汝桢发布了新的文献求助10
1秒前
1秒前
义气幼珊发布了新的文献求助10
2秒前
上官若男应助lx采纳,获得10
2秒前
dol完成签到,获得积分20
3秒前
魁梧的鞋垫完成签到,获得积分10
4秒前
4秒前
浅碎时光发布了新的文献求助50
4秒前
5秒前
7秒前
斯文败类应助崔雪峰采纳,获得10
7秒前
脑洞疼应助吕小布采纳,获得10
8秒前
CipherSage应助友好的元容采纳,获得10
8秒前
lx发布了新的文献求助10
10秒前
11秒前
高贵的映安完成签到,获得积分10
12秒前
13秒前
好巧完成签到,获得积分10
13秒前
sss发布了新的文献求助30
14秒前
14秒前
www发布了新的文献求助10
15秒前
声声入耳完成签到 ,获得积分10
15秒前
渡增越发布了新的文献求助10
16秒前
啥也不会啊完成签到,获得积分10
16秒前
浮游应助iuhgnor采纳,获得10
16秒前
完美世界应助学术小菜鸟采纳,获得10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022