材料科学
超细纤维
飞秒
超短脉冲
范德瓦尔斯力
饱和吸收
拉曼光谱
双金属片
纳米技术
分子
化学工程
激光器
光纤激光器
金属
光电子学
波长
复合材料
有机化学
光学
工程类
物理
化学
冶金
作者
Mingqi An,Zhiwen Pan,Xiaohui Li,Wei Wang,Cheng Jiang,Gang Li,Penglai Guo,Hongbing Lu,Yueheng Han,Xiaohan Chen,Ziyang Zhang
标识
DOI:10.1021/acsami.2c10217
摘要
The metal organic framework (MOF) has attracted more and more attention due to its unique morphology, functional linkers, and orderly network structure. Zeolitio imidazolata frameworks (ZIFs), which are formed by bivalent transition metals (Zn, Co, etc.) and nitrogen-containing heterocyclic imidazole or purine organic ligands, are a very attractive subclass of MOFs. ZIF-67, obtained by the nucleation growth of dimethylimidazole and Co 2p, has been developed as a precursor for porous nanostructured cobalt-based metal oxides. During material preparation we add rGO because it can be used as a basic element to construct macroscopic three-dimensional carbon structural materials, which self-assemble into a 3D network structure with ZIF-67 through simple van der Waals forces or hydrogen bonds, and some samples contain specific functional groups that are added to the precursor. In this paper, we employ liquid-phase synthesis to generate rGO-ZIF-67 and calcine it at the temperature of 350 °C to obtain rGO-Co3O4. Then we fabricate rGO-Co3O4 and rGO-ZIF-67 modulators based on microfibers and test their nonlinear optical absorption in 1.5 μm range. The modulation depths of rGO-Co3O4 and rGO-ZIF-67 are measured as 10.41% and 6.61%, respectively. By using microfiber-based rGO-Co3O4 modulator, we have obtained a conventional soliton and a soliton molecule in Er3+-doped fiber lasers. The conventional soliton has a pulse width of 793.4 fs and a spectral width of 3.3 at 1558.9 nm, respectively. The obtained soliton molecule has a spectral modulation period of 1.65 nm and temporal separation of 4.94 ps at 1563.2 nm. By employing a microfiber-based rGO-ZIF-67 modulator, we obtain conventional solitons with a spectral width of 1.9 nm at the central wavelength of 1529.8 nm. Our research may expand the MOF-based materials for ultrafast photonics, blazing a new path for fiber laser, optical communications, and optoelectronics, etc.
科研通智能强力驱动
Strongly Powered by AbleSci AI