An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach

医学 流体衰减反转恢复 无线电技术 脑瘤 接收机工作特性 磁共振成像 人工智能 放射科 病理 内科学 计算机科学
作者
Lan Zhang,Xiao Liu,Xia Xu,Weifan Liu,Yuxi Jia,Weiqiang Chen,Xiaona Fu,Qiang Li,Xiaojie Sun,Yangjing Zhang,Shenglei Shu,Xinli Zhang,Rui Xiang,Hongyi Chen,Peng Sun,Daoying Geng,Zekuan Yu,Jie Liu,Jing Wang
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:158: 110639-110639 被引量:12
标识
DOI:10.1016/j.ejrad.2022.110639
摘要

The histological sub-classes of brain tumors and the Ki-67 labeling index (LI) of tumor cells are major factors in the diagnosis, prognosis, and treatment management of patients. Many existing studies primarily focused on the classification of two classes of brain tumors and the Ki-67LI of gliomas. This study aimed to develop a preoperative non-invasive radiomics pipeline based on multiparametric-MRI to classify-three types of brain tumors, glioblastoma (GBM), metastasis (MET) and primary central nervous system lymphoma (PCNSL), and to predict their corresponding Ki-67LI.In this retrospective study, 153 patients with malignant brain tumors were involved. The radiomics features were extracted from three types of MRI (T1-weighted imaging (T1WI), fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (CE-T1WI)) with three masks (tumor core, edema, and whole tumor masks) and selected by a combination of Pearson correlation coefficient (CORR), LASSO, and Max-Relevance and Min-Redundancy (mRMR) filters. The performance of six classifiers was compared and the top three performing classifiers were used to construct the ensemble learning model (ELM). The proposed ELM was evaluated in the training dataset (108 patients) by 5-fold cross-validation and in the test dataset (45 patients) by hold-out. The accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score, and the area under the receiver operating characteristic curve (AUC) indicators evaluated the performance of the models.The best feature sets and ELM with the optimal performance were selected to construct the tri-categorized brain tumor aided diagnosis model (training dataset AUC: 0.96 (95% CI: 0.93, 0.99); test dataset AUC: 0.93) and Ki-67LI prediction model (training dataset AUC: 0.96 (95% CI: 0.94, 0.98); test dataset AUC: 0.91). The CE-T1WI was the best single modality for all classifiers. Meanwhile, the whole tumor was the most vital mask for the tumor classification and the tumor core was the most vital mask for the Ki-67LI prediction.The developed radiomics models led to the precise preoperative classification of GBM, MET, and PCNSL and the prediction of Ki-67LI, which could be utilized in clinical practice for the treatment planning for brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哆啦A梦完成签到,获得积分10
1秒前
kanoai7完成签到,获得积分10
1秒前
wyz完成签到,获得积分10
1秒前
1秒前
柏林寒冬应助想摆烂采纳,获得10
2秒前
xu完成签到,获得积分10
2秒前
左左完成签到,获得积分10
3秒前
RSC完成签到,获得积分10
4秒前
4秒前
4秒前
小奔完成签到,获得积分10
5秒前
柠A完成签到,获得积分10
5秒前
忆仙姿完成签到,获得积分10
5秒前
6秒前
6秒前
玉玉应助靜心采纳,获得20
7秒前
aaiirrii发布了新的文献求助10
8秒前
健康的妙菱完成签到,获得积分10
8秒前
9秒前
Yy杨优秀完成签到,获得积分10
9秒前
tianmengkui完成签到,获得积分10
10秒前
Babe1934完成签到,获得积分10
10秒前
10秒前
无情听南发布了新的文献求助10
11秒前
11秒前
鱼鱼鱼完成签到,获得积分10
11秒前
顾矜应助max采纳,获得10
12秒前
12秒前
共享精神应助Eric采纳,获得10
13秒前
石石发布了新的文献求助30
13秒前
彩色的白秋完成签到,获得积分10
13秒前
桐桐应助巴豆有点妖采纳,获得10
14秒前
14秒前
汉堡包应助enen采纳,获得10
14秒前
15秒前
15秒前
个性的汲发布了新的文献求助10
17秒前
可乐完成签到,获得积分10
17秒前
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186