已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An integrative non-invasive malignant brain tumors classification and Ki-67 labeling index prediction pipeline with radiomics approach

医学 流体衰减反转恢复 无线电技术 脑瘤 接收机工作特性 磁共振成像 人工智能 放射科 病理 内科学 计算机科学
作者
Lan Zhang,Xiao Liu,Xia Xu,Weifan Liu,Yuxi Jia,Weiqiang Chen,Xiaona Fu,Qiang Li,Xiaojie Sun,Yangjing Zhang,Shenglei Shu,Xinli Zhang,Rui Xiang,Hongyi Chen,Peng Sun,Daoying Geng,Zekuan Yu,Jie Liu,Jing Wang
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:158: 110639-110639 被引量:12
标识
DOI:10.1016/j.ejrad.2022.110639
摘要

The histological sub-classes of brain tumors and the Ki-67 labeling index (LI) of tumor cells are major factors in the diagnosis, prognosis, and treatment management of patients. Many existing studies primarily focused on the classification of two classes of brain tumors and the Ki-67LI of gliomas. This study aimed to develop a preoperative non-invasive radiomics pipeline based on multiparametric-MRI to classify-three types of brain tumors, glioblastoma (GBM), metastasis (MET) and primary central nervous system lymphoma (PCNSL), and to predict their corresponding Ki-67LI.In this retrospective study, 153 patients with malignant brain tumors were involved. The radiomics features were extracted from three types of MRI (T1-weighted imaging (T1WI), fluid-attenuated inversion recovery (FLAIR), and contrast-enhanced T1-weighted imaging (CE-T1WI)) with three masks (tumor core, edema, and whole tumor masks) and selected by a combination of Pearson correlation coefficient (CORR), LASSO, and Max-Relevance and Min-Redundancy (mRMR) filters. The performance of six classifiers was compared and the top three performing classifiers were used to construct the ensemble learning model (ELM). The proposed ELM was evaluated in the training dataset (108 patients) by 5-fold cross-validation and in the test dataset (45 patients) by hold-out. The accuracy (ACC), sensitivity (SEN), specificity (SPE), F1-Score, and the area under the receiver operating characteristic curve (AUC) indicators evaluated the performance of the models.The best feature sets and ELM with the optimal performance were selected to construct the tri-categorized brain tumor aided diagnosis model (training dataset AUC: 0.96 (95% CI: 0.93, 0.99); test dataset AUC: 0.93) and Ki-67LI prediction model (training dataset AUC: 0.96 (95% CI: 0.94, 0.98); test dataset AUC: 0.91). The CE-T1WI was the best single modality for all classifiers. Meanwhile, the whole tumor was the most vital mask for the tumor classification and the tumor core was the most vital mask for the Ki-67LI prediction.The developed radiomics models led to the precise preoperative classification of GBM, MET, and PCNSL and the prediction of Ki-67LI, which could be utilized in clinical practice for the treatment planning for brain tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雷锋发布了新的文献求助10
3秒前
5秒前
zho发布了新的文献求助10
6秒前
Zn发布了新的文献求助10
9秒前
14秒前
yyw完成签到,获得积分10
17秒前
19秒前
赘婿应助111采纳,获得10
20秒前
田様应助小红采纳,获得10
21秒前
21秒前
Cassiel发布了新的文献求助50
21秒前
小蘑菇应助Andema采纳,获得10
22秒前
清修发布了新的文献求助10
25秒前
26秒前
Betty完成签到 ,获得积分10
30秒前
北媛完成签到,获得积分10
34秒前
TongMan完成签到,获得积分20
38秒前
41秒前
万能图书馆应助MOMO采纳,获得10
44秒前
迟大猫应助研妍采纳,获得10
46秒前
Zn发布了新的文献求助10
47秒前
50秒前
50秒前
50秒前
50秒前
52秒前
科研通AI5应助yss采纳,获得10
53秒前
Andema发布了新的文献求助10
54秒前
54秒前
55秒前
Cassiel发布了新的文献求助30
55秒前
111发布了新的文献求助10
58秒前
MOMO发布了新的文献求助10
1分钟前
科研通AI5应助zLin采纳,获得10
1分钟前
1分钟前
Andema完成签到,获得积分10
1分钟前
平淡的雁开完成签到 ,获得积分10
1分钟前
1分钟前
文献无碍发布了新的文献求助30
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526307
求助须知:如何正确求助?哪些是违规求助? 3106719
关于积分的说明 9281335
捐赠科研通 2804220
什么是DOI,文献DOI怎么找? 1539384
邀请新用户注册赠送积分活动 716529
科研通“疑难数据库(出版商)”最低求助积分说明 709515