清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ToxNet: an artificial intelligence designed for decision support for toxin prediction

人工智能 机器学习 多层感知器 匹配(统计) 人工神经网络 计算机科学 临床决策支持系统 信息学 决策支持系统 医学 病理 工程类 电气工程
作者
Tobias Zellner,Katrin Romanek,Christian Rabe,Sabrina Schmoll,Stefanie Geith,Eva-Carina Heier,Raphael Stich,Hendrik Burwinkel,Matthias Keicher,David Bani-Harouni,Nassir Navab,Seyed‐Ahmad Ahmadi,Florian Eyer
出处
期刊:Clinical Toxicology [Taylor & Francis]
卷期号:61 (1): 56-63 被引量:1
标识
DOI:10.1080/15563650.2022.2144345
摘要

Artificial intelligences (AIs) are emerging in the field of medical informatics in many areas. They are mostly used for diagnosis support in medical imaging but have potential uses in many other fields of medicine where large datasets are available.To develop an artificial intelligence (AI) "ToxNet", a machine-learning based computer-aided diagnosis (CADx) system, which aims to predict poisons based on patient's symptoms and metadata from our Poison Control Center (PCC) data. To prove its accuracy and compare it against medical doctors (MDs).The CADx system was developed and trained using data from 781,278 calls recorded in our PCC database from 2001 to 2019. All cases were mono-intoxications. Patient symptoms and meta-information (e.g., age group, sex, etiology, toxin point of entry, weekday, etc.) were provided. In the pilot phase, the AI was trained on 10 substances, the AI's prediction was compared to naïve matching, literature matching, a multi-layer perceptron (MLP), and the graph attention network (GAT). The trained AI's accuracy was then compared to 10 medical doctors in an individual and in an identical dataset. The dataset was then expanded to 28 substances and the predictions and comparisons repeated.In the pilot, the prediction performance in a set of 8995 patients with 10 substances was 0.66 ± 0.01 (F1 micro score). Our CADx system was significantly superior to naïve matching, literature matching, MLP, and GAT (p < 0.005). It outperformed our physicians experienced in clinical toxicology in the individual and identical dataset. In the extended dataset, our CADx system was able to predict the correct toxin in a set of 36,033 patients with 28 substances with an overall performance of 0.27 ± 0.01 (F1 micro score), also significantly superior to naïve matching, literature matching, MLP, and GAT. It also outperformed our MDs.Our AI trained on a large PCC database works well for poison prediction in these experiments. With further research, it might become a valuable aid for physicians in predicting unknown substances and might be the first step into AI use in PCCs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糯米团的完成签到 ,获得积分10
37秒前
rad1413完成签到 ,获得积分10
50秒前
碗碗豆喵完成签到 ,获得积分10
1分钟前
星辰完成签到 ,获得积分10
1分钟前
gincle完成签到 ,获得积分10
2分钟前
敏敏完成签到 ,获得积分10
2分钟前
allrubbish完成签到,获得积分10
2分钟前
mike2012完成签到 ,获得积分10
2分钟前
苦咖啡行僧完成签到 ,获得积分10
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
贰鸟应助科研通管家采纳,获得20
2分钟前
jlwang完成签到,获得积分10
2分钟前
曲聋五完成签到 ,获得积分10
2分钟前
vincy完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
DDL发布了新的文献求助20
3分钟前
ldjldj_2004完成签到 ,获得积分10
3分钟前
3分钟前
huangzsdy完成签到,获得积分10
3分钟前
海盗船长完成签到,获得积分10
3分钟前
xiao发布了新的文献求助10
3分钟前
ywzwszl完成签到,获得积分10
3分钟前
阜睿完成签到 ,获得积分10
4分钟前
袁雪蓓完成签到 ,获得积分10
4分钟前
vitamin完成签到 ,获得积分10
4分钟前
刘丰完成签到 ,获得积分10
4分钟前
zhiwei完成签到 ,获得积分10
4分钟前
贰鸟应助科研通管家采纳,获得20
4分钟前
贰鸟应助科研通管家采纳,获得20
4分钟前
vsvsgo完成签到,获得积分20
5分钟前
nanfeng完成签到 ,获得积分10
5分钟前
爆米花应助Milesgao采纳,获得10
5分钟前
段誉完成签到 ,获得积分10
6分钟前
lovexa完成签到,获得积分10
6分钟前
xlj730227完成签到 ,获得积分10
6分钟前
xiao完成签到,获得积分20
6分钟前
JY完成签到 ,获得积分10
6分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736704
求助须知:如何正确求助?哪些是违规求助? 3280668
关于积分的说明 10020191
捐赠科研通 2997357
什么是DOI,文献DOI怎么找? 1644527
邀请新用户注册赠送积分活动 782060
科研通“疑难数据库(出版商)”最低求助积分说明 749656