Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction

无症状的 医学 内科学 心脏病学 智能手表 射血分数 窦性心律 前瞻性队列研究 置信区间 心力衰竭 心房颤动 计算机科学 嵌入式系统 可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (12): 2497-2503 被引量:95
标识
DOI:10.1038/s41591-022-02053-1
摘要

Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助daodao采纳,获得10
刚刚
刚刚
11完成签到,获得积分10
刚刚
3秒前
111完成签到 ,获得积分10
3秒前
111111zx111完成签到,获得积分10
3秒前
王术完成签到,获得积分10
4秒前
英俊的铭应助MooN采纳,获得10
5秒前
笨笨中心发布了新的文献求助10
5秒前
5秒前
8秒前
8秒前
萧一发布了新的文献求助10
9秒前
14秒前
大敏发布了新的文献求助20
15秒前
研友_Zlem38完成签到,获得积分10
16秒前
充电宝应助么大人采纳,获得10
16秒前
从云发布了新的文献求助10
17秒前
Scinature发布了新的文献求助10
19秒前
罗浩完成签到,获得积分10
24秒前
凤梨完成签到,获得积分10
25秒前
完美世界应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得30
25秒前
25秒前
sara倩应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
26秒前
orixero应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
赘婿应助科研通管家采纳,获得10
26秒前
乐乐应助科研通管家采纳,获得10
26秒前
坦率的匪应助科研通管家采纳,获得20
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
SYLH应助科研通管家采纳,获得10
26秒前
26秒前
SYLH应助科研通管家采纳,获得20
26秒前
26秒前
Hello应助科研通管家采纳,获得10
26秒前
艾米发布了新的文献求助10
27秒前
Zll完成签到,获得积分10
27秒前
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975