Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction

无症状的 医学 内科学 心脏病学 智能手表 射血分数 窦性心律 前瞻性队列研究 置信区间 心力衰竭 心房颤动 计算机科学 嵌入式系统 可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:28 (12): 2497-2503 被引量:88
标识
DOI:10.1038/s41591-022-02053-1
摘要

Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助张晓倩采纳,获得10
1秒前
1秒前
逸龙完成签到,获得积分10
1秒前
半只小羊完成签到 ,获得积分10
2秒前
饱饱完成签到,获得积分10
2秒前
你好完成签到,获得积分10
3秒前
3秒前
科研通AI5应助tidongzhiwu采纳,获得10
3秒前
An完成签到,获得积分10
3秒前
7788999完成签到,获得积分10
3秒前
4秒前
4秒前
JIAJIA完成签到,获得积分10
5秒前
ice完成签到 ,获得积分10
5秒前
CLL发布了新的文献求助10
5秒前
SUN完成签到,获得积分10
5秒前
6秒前
8秒前
归零儿完成签到,获得积分10
8秒前
8秒前
饱饱发布了新的文献求助10
9秒前
Jasper应助Carrie采纳,获得10
9秒前
tleeny发布了新的文献求助10
9秒前
涛哥完成签到,获得积分10
10秒前
11秒前
catherine完成签到,获得积分10
11秒前
11秒前
沙瑞金完成签到,获得积分10
11秒前
彭于晏应助CWEI采纳,获得10
11秒前
充电宝应助筋筋子采纳,获得10
11秒前
彩色的向珊完成签到,获得积分10
11秒前
一汪发布了新的文献求助10
11秒前
xubee完成签到,获得积分10
12秒前
婷婷完成签到,获得积分10
12秒前
科研通AI5应助Jmting采纳,获得10
12秒前
Darlin发布了新的文献求助10
12秒前
13秒前
郭mm发布了新的文献求助10
13秒前
养猪的大哥完成签到,获得积分10
13秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 500
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3767565
求助须知:如何正确求助?哪些是违规求助? 3312194
关于积分的说明 10162593
捐赠科研通 3027488
什么是DOI,文献DOI怎么找? 1661538
邀请新用户注册赠送积分活动 794088
科研通“疑难数据库(出版商)”最低求助积分说明 755998