Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction

无症状的 医学 内科学 心脏病学 智能手表 射血分数 窦性心律 前瞻性队列研究 置信区间 心力衰竭 心房颤动 计算机科学 嵌入式系统 可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (12): 2497-2503 被引量:80
标识
DOI:10.1038/s41591-022-02053-1
摘要

Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
别拖延了要毕业啊完成签到,获得积分10
1秒前
1秒前
1秒前
Rrr发布了新的文献求助10
1秒前
dingdong发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
4秒前
yuan发布了新的文献求助10
4秒前
5秒前
cc完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
一一发布了新的文献求助10
6秒前
领导范儿应助Chridy采纳,获得10
6秒前
7秒前
凤凰山发布了新的文献求助10
7秒前
7秒前
孔雨珍发布了新的文献求助10
7秒前
淡定的思松应助通~采纳,获得10
8秒前
8秒前
明亮的八宝粥完成签到,获得积分10
8秒前
mayungui发布了新的文献求助10
8秒前
大型海狮完成签到,获得积分10
8秒前
搜集达人应助科研菜鸟采纳,获得10
9秒前
雨天有伞完成签到,获得积分10
9秒前
蕾子发布了新的文献求助10
9秒前
9秒前
zhui发布了新的文献求助10
9秒前
wanci应助jxcandice采纳,获得10
9秒前
factor发布了新的文献求助10
9秒前
10秒前
泊声发布了新的文献求助20
10秒前
narthon完成签到 ,获得积分10
10秒前
梦幻完成签到,获得积分10
10秒前
1604531786完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794