Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction

无症状的 医学 内科学 心脏病学 智能手表 射血分数 窦性心律 前瞻性队列研究 置信区间 心力衰竭 心房颤动 计算机科学 嵌入式系统 可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine [Springer Nature]
卷期号:28 (12): 2497-2503 被引量:57
标识
DOI:10.1038/s41591-022-02053-1
摘要

Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野忆文发布了新的文献求助10
刚刚
无辜牛青完成签到,获得积分10
6秒前
7秒前
科目三应助帅气草莓采纳,获得10
7秒前
淡定碧玉完成签到 ,获得积分10
7秒前
我可厉害了完成签到,获得积分10
8秒前
白白的珠珠关注了科研通微信公众号
10秒前
wang5945发布了新的文献求助10
11秒前
WSYang完成签到,获得积分10
11秒前
熊猫小宇完成签到,获得积分10
11秒前
12秒前
怕孤单的思雁完成签到,获得积分10
13秒前
14秒前
MM11111完成签到,获得积分10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
15秒前
15秒前
不配.应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
不配.应助科研通管家采纳,获得10
15秒前
15秒前
Orange应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
Cassie应助科研通管家采纳,获得10
15秒前
ephore应助科研通管家采纳,获得30
15秒前
今后应助科研通管家采纳,获得10
15秒前
斯文败类应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
NexusExplorer应助科研通管家采纳,获得30
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
Nano-Su应助科研通管家采纳,获得10
16秒前
CipherSage应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
领导范儿应助evefei采纳,获得10
16秒前
困于昭昭发布了新的文献求助10
16秒前
XP416完成签到,获得积分10
17秒前
敲一下叮发布了新的文献求助10
19秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211399
求助须知:如何正确求助?哪些是违规求助? 2860380
关于积分的说明 8123783
捐赠科研通 2526273
什么是DOI,文献DOI怎么找? 1359897
科研通“疑难数据库(出版商)”最低求助积分说明 643083
邀请新用户注册赠送积分活动 615170