无症状的
医学
内科学
心脏病学
智能手表
射血分数
窦性心律
前瞻性队列研究
置信区间
心力衰竭
心房颤动
计算机科学
嵌入式系统
可穿戴计算机
作者
Zachi I. Attia,David Harmon,Jennifer Dugan,Lukas Manka,Francisco López-Jiménez,Amir Lerman,Konstantinos C. Siontis,Peter A. Noseworthy,Xiaoxi Yao,Eric W. Klavetter,John Halamka,Samuel J. Asirvatham,Rita Khan,Rickey E. Carter,Bradley C. Leibovich,Paul A. Friedman
出处
期刊:Nature Medicine
[Springer Nature]
日期:2022-11-14
卷期号:28 (12): 2497-2503
被引量:57
标识
DOI:10.1038/s41591-022-02053-1
摘要
Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823–0.946) and 0.881 (0.815–0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition. In this proof-of-concept prospective study, single-lead electrocardiograms obtained by smartwatches were able to identify individuals with left ventricular dysfunction, potentially serving as an early warning system for heart failure.
科研通智能强力驱动
Strongly Powered by AbleSci AI