A recognition method of mushroom mycelium varieties based on near-infrared spectroscopy and deep learning model

菌丝体 蘑菇 模式识别(心理学) 人工智能 数学 转化(遗传学) 食用菌 近红外光谱 计算机科学 园艺 生物系统 植物 生物 物理 光学 基因 生物化学
作者
Haiou Guan,Miao Yu,Xiaodan Ma,Linyang Li,Chen Yang,Jiao Yang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104428-104428 被引量:13
标识
DOI:10.1016/j.infrared.2022.104428
摘要

Rapid detection of the mycelium varieties of the edible fungi is of great significance for its quality breeding and cultivation. Artificial observation method is inaccurate to judge the mycelium varieties, thus, it is urgent to research efficient detection technology for mycelium varieties. In this study, a recognition method of mycelium varieties was proposed based on near-infrared spectroscopy and deep learning model. First, the near infrared spectral data of six varieties of mushroom mycelium were acquired by Fourier transform near infrared spectrometer. Second, the wavelet packet threshold denoising method and the standard normal variable transformation (SNV) method were used to preprocess the near-infrared (NIR) spectral data of mushroom mycelium. The characteristic wavelength of the preprocessed spectral data was extracted by successive projections algorithm (SPA). In addition, 864 groups of samples after preprocessing were randomly divided into 691 training sets and 173 test sets according to the ratio of 4:1. Finally, based on the 16 wavenumber variables extracted by the SPA, a recognition model of mushroom mycelium varieties was constructed using an eight-layer convolutional neural network (E-CNN). The result showed that an accurate and rapid method for the recognition of edible fungi's mycelium varieties was realized, with the recognition accuracy of 98.27 % and the running time of 0.000329 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助派大星采纳,获得10
刚刚
张晓龙发布了新的文献求助10
刚刚
无辜的小甜瓜完成签到,获得积分10
2秒前
2秒前
3秒前
沉静的时光完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
wave完成签到,获得积分10
4秒前
4秒前
釦沐发布了新的文献求助10
5秒前
5秒前
chuanxue发布了新的文献求助10
6秒前
Tree完成签到,获得积分20
6秒前
高伟杰完成签到,获得积分10
6秒前
星辰大海应助kk采纳,获得10
6秒前
薄荷岛1发布了新的文献求助10
6秒前
王老裂应助小草采纳,获得10
7秒前
7秒前
彭于晏应助欧no采纳,获得10
7秒前
CipherSage应助111采纳,获得10
8秒前
腌椰菜发布了新的文献求助10
9秒前
喵喵完成签到,获得积分10
10秒前
Max发布了新的文献求助10
11秒前
11秒前
归海浩阑应助Jupiter 1234采纳,获得10
11秒前
英姑应助三重积分咖啡采纳,获得10
11秒前
MichaelQin完成签到,获得积分10
11秒前
情怀应助123qwe采纳,获得10
12秒前
Leucalypt完成签到,获得积分10
13秒前
kk完成签到,获得积分10
13秒前
15秒前
领导范儿应助kls采纳,获得10
15秒前
自信夜春完成签到,获得积分10
16秒前
lgwang发布了新的文献求助10
16秒前
高大豌豆发布了新的文献求助10
18秒前
luxia完成签到 ,获得积分10
18秒前
20秒前
gjy驳回了Hayat应助
20秒前
铂铑钯钌完成签到,获得积分0
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062428
求助须知:如何正确求助?哪些是违规求助? 4286268
关于积分的说明 13356749
捐赠科研通 4104095
什么是DOI,文献DOI怎么找? 2247300
邀请新用户注册赠送积分活动 1252893
关于科研通互助平台的介绍 1183800