亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A recognition method of mushroom mycelium varieties based on near-infrared spectroscopy and deep learning model

菌丝体 蘑菇 模式识别(心理学) 人工智能 数学 转化(遗传学) 食用菌 近红外光谱 计算机科学 园艺 生物系统 植物 生物 物理 光学 基因 生物化学
作者
Haiou Guan,Miao Yu,Xiaodan Ma,Linyang Li,Chen Yang,Jiao Yang
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:127: 104428-104428 被引量:13
标识
DOI:10.1016/j.infrared.2022.104428
摘要

Rapid detection of the mycelium varieties of the edible fungi is of great significance for its quality breeding and cultivation. Artificial observation method is inaccurate to judge the mycelium varieties, thus, it is urgent to research efficient detection technology for mycelium varieties. In this study, a recognition method of mycelium varieties was proposed based on near-infrared spectroscopy and deep learning model. First, the near infrared spectral data of six varieties of mushroom mycelium were acquired by Fourier transform near infrared spectrometer. Second, the wavelet packet threshold denoising method and the standard normal variable transformation (SNV) method were used to preprocess the near-infrared (NIR) spectral data of mushroom mycelium. The characteristic wavelength of the preprocessed spectral data was extracted by successive projections algorithm (SPA). In addition, 864 groups of samples after preprocessing were randomly divided into 691 training sets and 173 test sets according to the ratio of 4:1. Finally, based on the 16 wavenumber variables extracted by the SPA, a recognition model of mushroom mycelium varieties was constructed using an eight-layer convolutional neural network (E-CNN). The result showed that an accurate and rapid method for the recognition of edible fungi's mycelium varieties was realized, with the recognition accuracy of 98.27 % and the running time of 0.000329 s.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的琳发布了新的文献求助10
1秒前
6秒前
小李驳回了华仔应助
26秒前
29秒前
Criminology34应助科研通管家采纳,获得10
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
30秒前
Criminology34应助科研通管家采纳,获得10
30秒前
科目三应助科研通管家采纳,获得10
30秒前
嘟嘟嘟嘟发布了新的文献求助10
43秒前
44秒前
bai完成签到 ,获得积分10
45秒前
优美香露发布了新的文献求助10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
答辩完成签到 ,获得积分10
1分钟前
1分钟前
AXX041795发布了新的文献求助10
1分钟前
小鸟芋圆露露完成签到 ,获得积分0
1分钟前
maprang完成签到,获得积分10
1分钟前
美琦发布了新的文献求助10
1分钟前
情怀应助大艺术家吞吞采纳,获得10
1分钟前
小李要上岸完成签到,获得积分10
1分钟前
howgoods完成签到 ,获得积分10
2分钟前
2分钟前
小李发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
大模型应助AXX041795采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
优美香露发布了新的文献求助10
2分钟前
小二郎应助annathd采纳,获得10
2分钟前
2分钟前
2分钟前
annathd发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723793
求助须知:如何正确求助?哪些是违规求助? 5281025
关于积分的说明 15299145
捐赠科研通 4872071
什么是DOI,文献DOI怎么找? 2616558
邀请新用户注册赠送积分活动 1566354
关于科研通互助平台的介绍 1523235