A recognition method of mushroom mycelium varieties based on near-infrared spectroscopy and deep learning model

菌丝体 蘑菇 模式识别(心理学) 人工智能 数学 转化(遗传学) 食用菌 近红外光谱 计算机科学 园艺 生物系统 植物 生物 物理 光学 生物化学 基因
作者
Haiou Guan,Miao Yu,Xiaodan Ma,Linyang Li,Chen Yang,Jiao Yang
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:127: 104428-104428 被引量:13
标识
DOI:10.1016/j.infrared.2022.104428
摘要

Rapid detection of the mycelium varieties of the edible fungi is of great significance for its quality breeding and cultivation. Artificial observation method is inaccurate to judge the mycelium varieties, thus, it is urgent to research efficient detection technology for mycelium varieties. In this study, a recognition method of mycelium varieties was proposed based on near-infrared spectroscopy and deep learning model. First, the near infrared spectral data of six varieties of mushroom mycelium were acquired by Fourier transform near infrared spectrometer. Second, the wavelet packet threshold denoising method and the standard normal variable transformation (SNV) method were used to preprocess the near-infrared (NIR) spectral data of mushroom mycelium. The characteristic wavelength of the preprocessed spectral data was extracted by successive projections algorithm (SPA). In addition, 864 groups of samples after preprocessing were randomly divided into 691 training sets and 173 test sets according to the ratio of 4:1. Finally, based on the 16 wavenumber variables extracted by the SPA, a recognition model of mushroom mycelium varieties was constructed using an eight-layer convolutional neural network (E-CNN). The result showed that an accurate and rapid method for the recognition of edible fungi's mycelium varieties was realized, with the recognition accuracy of 98.27 % and the running time of 0.000329 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
1秒前
5秒前
6秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
6秒前
能干冰露完成签到,获得积分10
9秒前
牛奶拌可乐完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助30
11秒前
周小鱼完成签到 ,获得积分10
15秒前
20秒前
28秒前
老张完成签到,获得积分10
34秒前
36秒前
zhugao完成签到,获得积分10
38秒前
41秒前
南风知我意完成签到,获得积分10
44秒前
朴实寻琴完成签到 ,获得积分10
44秒前
可可可爱完成签到 ,获得积分10
47秒前
lsy完成签到,获得积分10
51秒前
量子星尘发布了新的文献求助10
54秒前
55秒前
55秒前
hwen1998完成签到 ,获得积分10
58秒前
59秒前
1分钟前
wwb发布了新的文献求助10
1分钟前
1分钟前
1分钟前
LHT完成签到,获得积分10
1分钟前
落寞凌波发布了新的文献求助10
1分钟前
桐桐应助幸福的杨小夕采纳,获得10
1分钟前
韩麒嘉完成签到 ,获得积分10
1分钟前
聪慧的凝海完成签到 ,获得积分0
1分钟前
1分钟前
wwb发布了新的文献求助10
1分钟前
phil完成签到 ,获得积分10
1分钟前
1分钟前
高高菠萝完成签到 ,获得积分10
1分钟前
滴滴滴完成签到 ,获得积分10
1分钟前
yangsi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038029
求助须知:如何正确求助?哪些是违规求助? 3575740
关于积分的说明 11373751
捐赠科研通 3305559
什么是DOI,文献DOI怎么找? 1819224
邀请新用户注册赠送积分活动 892652
科研通“疑难数据库(出版商)”最低求助积分说明 815022