亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

HIONet: Deep priors based deep unfolded network for phase retrieval

先验概率 可解释性 深度学习 相位恢复 计算机科学 人工智能 推论 机器学习 算法 模式识别(心理学) 数学 贝叶斯概率 傅里叶变换 数学分析
作者
Yuchi Yang,Qiusheng Lian,Xiaohua Zhang,Dan Zhang,Huibin Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103797-103797 被引量:1
标识
DOI:10.1016/j.dsp.2022.103797
摘要

Probing the issue of phase retrieval has attracted researchers for many years, due to its wide range of application. Phase retrieval aims to recover an unknown signal from phase-free measurements. Classical alternative projection algorithms have the significant advantages of simplicity and few fine-tuning parameters. However, they suffer from non-convexity and often get stuck in local minima in the presence of noise disturbance. In this work, we develop an efficient hybrid model-based and data-driven approach to solve the phase retrieval problem with deep priors. To effectively utilize the inherent image priors, we propose a deep non-iterative (unfolded) network based on the classic HIO method, referred to as HIONet, which can adaptively learn inherent priors from the truth data distribution. Particularly, we replace the projection operator with trainable deep network, and as a result that learning parameterized function with weights in a supervised manner is equal to learning the prior knowledge from data with truth distributions. In turn, the deep priors learned during training enforce the unfolded network to obtain the optimal solution for phase retrieval problem. In the pipeline of our method, deep priors are incorporated with the physical image formation algorithm, so that the proposed HIONet benefits from the representational capabilities of deep networks, as well as the interpretability and versatility of the traditional well-established algorithms. Moreover, inspired by compounding and aggregating diverse representations to benefit the network for more accurate inference, an enhanced version with cross-blocks features fusion, referred to as HIONet+, is designed to further improve the reconstruction. Extensive experimental results on noisy phase-free measurements show that the developed methods outperform the competitors in terms of quantitative metrics such as PSNR, SSIM and visual effects at all noise levels. In addition, non-oversampling sparse phase retrieval experiments consistently demonstrate that our methods outperform compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lshyong完成签到 ,获得积分10
6秒前
Mistletoe完成签到 ,获得积分10
12秒前
zyjsunye完成签到 ,获得积分0
13秒前
21秒前
43秒前
zhangxr发布了新的文献求助10
49秒前
56秒前
轮胎配方发布了新的文献求助10
1分钟前
小蘑菇应助风中的夕阳采纳,获得10
1分钟前
zhangxr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
奶盐牙牙乐完成签到 ,获得积分10
2分钟前
2分钟前
L_MD完成签到,获得积分10
2分钟前
Yingkun_Xu发布了新的文献求助10
2分钟前
Yingkun_Xu完成签到,获得积分10
2分钟前
铁臂阿童木完成签到,获得积分10
2分钟前
句号完成签到 ,获得积分10
3分钟前
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
3分钟前
吴亦凡女朋友完成签到,获得积分10
3分钟前
3分钟前
ddddddd完成签到 ,获得积分10
3分钟前
4分钟前
张子捷应助吴亦凡女朋友采纳,获得10
4分钟前
4分钟前
4分钟前
犹豫芝麻应助偶尔打嗝儿采纳,获得10
4分钟前
4分钟前
Serendiply完成签到,获得积分10
4分钟前
uikymh完成签到 ,获得积分0
5分钟前
jjjjjjjjjjj发布了新的文献求助10
5分钟前
5分钟前
5分钟前
乐多完成签到,获得积分10
5分钟前
852应助泡面小猪采纳,获得30
5分钟前
6分钟前
泡面小猪发布了新的文献求助30
6分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813328
关于积分的说明 7899665
捐赠科研通 2472791
什么是DOI,文献DOI怎么找? 1316526
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142