HIONet: Deep priors based deep unfolded network for phase retrieval

先验概率 可解释性 深度学习 相位恢复 计算机科学 人工智能 推论 机器学习 算法 模式识别(心理学) 数学 贝叶斯概率 数学分析 傅里叶变换
作者
Yuchi Yang,Qiusheng Lian,Xiaohua Zhang,Dan Zhang,Huibin Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103797-103797 被引量:1
标识
DOI:10.1016/j.dsp.2022.103797
摘要

Probing the issue of phase retrieval has attracted researchers for many years, due to its wide range of application. Phase retrieval aims to recover an unknown signal from phase-free measurements. Classical alternative projection algorithms have the significant advantages of simplicity and few fine-tuning parameters. However, they suffer from non-convexity and often get stuck in local minima in the presence of noise disturbance. In this work, we develop an efficient hybrid model-based and data-driven approach to solve the phase retrieval problem with deep priors. To effectively utilize the inherent image priors, we propose a deep non-iterative (unfolded) network based on the classic HIO method, referred to as HIONet, which can adaptively learn inherent priors from the truth data distribution. Particularly, we replace the projection operator with trainable deep network, and as a result that learning parameterized function with weights in a supervised manner is equal to learning the prior knowledge from data with truth distributions. In turn, the deep priors learned during training enforce the unfolded network to obtain the optimal solution for phase retrieval problem. In the pipeline of our method, deep priors are incorporated with the physical image formation algorithm, so that the proposed HIONet benefits from the representational capabilities of deep networks, as well as the interpretability and versatility of the traditional well-established algorithms. Moreover, inspired by compounding and aggregating diverse representations to benefit the network for more accurate inference, an enhanced version with cross-blocks features fusion, referred to as HIONet+, is designed to further improve the reconstruction. Extensive experimental results on noisy phase-free measurements show that the developed methods outperform the competitors in terms of quantitative metrics such as PSNR, SSIM and visual effects at all noise levels. In addition, non-oversampling sparse phase retrieval experiments consistently demonstrate that our methods outperform compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChenXY完成签到,获得积分10
刚刚
halo发布了新的文献求助10
1秒前
lst完成签到,获得积分10
2秒前
科研通AI2S应助kangk采纳,获得10
3秒前
浮游应助空明流毓采纳,获得10
5秒前
6秒前
YUESIYA发布了新的文献求助30
7秒前
寒冷的奇异果完成签到,获得积分10
7秒前
spc68应助早安采纳,获得10
11秒前
复成完成签到 ,获得积分10
13秒前
光亮妙之完成签到,获得积分10
13秒前
dd发布了新的文献求助30
13秒前
整齐半青完成签到 ,获得积分10
13秒前
你好完成签到,获得积分10
14秒前
chenanqi完成签到,获得积分10
14秒前
15秒前
yfn完成签到,获得积分10
19秒前
20秒前
24秒前
halo完成签到,获得积分10
25秒前
抑郁小鼠解剖家完成签到,获得积分10
25秒前
忧心的不言完成签到,获得积分10
27秒前
5_羟色胺完成签到,获得积分10
29秒前
12135发布了新的文献求助30
29秒前
wanci应助科研通管家采纳,获得10
32秒前
小蘑菇应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
科研通AI6应助科研通管家采纳,获得80
32秒前
华仔应助科研通管家采纳,获得10
32秒前
科研通AI2S应助科研通管家采纳,获得30
32秒前
爱喝酸奶完成签到 ,获得积分10
32秒前
njgi发布了新的文献求助10
33秒前
材小料完成签到,获得积分10
34秒前
FashionBoy应助重要谷雪采纳,获得10
35秒前
爱偷懒的猪完成签到,获得积分10
36秒前
怂宝儿完成签到,获得积分10
37秒前
38秒前
40秒前
水澈天澜发布了新的文献求助20
41秒前
dd发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521