HIONet: Deep priors based deep unfolded network for phase retrieval

先验概率 可解释性 深度学习 相位恢复 计算机科学 人工智能 推论 机器学习 算法 模式识别(心理学) 数学 贝叶斯概率 数学分析 傅里叶变换
作者
Yuchi Yang,Qiusheng Lian,Xiaohua Zhang,Dan Zhang,Huibin Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103797-103797 被引量:1
标识
DOI:10.1016/j.dsp.2022.103797
摘要

Probing the issue of phase retrieval has attracted researchers for many years, due to its wide range of application. Phase retrieval aims to recover an unknown signal from phase-free measurements. Classical alternative projection algorithms have the significant advantages of simplicity and few fine-tuning parameters. However, they suffer from non-convexity and often get stuck in local minima in the presence of noise disturbance. In this work, we develop an efficient hybrid model-based and data-driven approach to solve the phase retrieval problem with deep priors. To effectively utilize the inherent image priors, we propose a deep non-iterative (unfolded) network based on the classic HIO method, referred to as HIONet, which can adaptively learn inherent priors from the truth data distribution. Particularly, we replace the projection operator with trainable deep network, and as a result that learning parameterized function with weights in a supervised manner is equal to learning the prior knowledge from data with truth distributions. In turn, the deep priors learned during training enforce the unfolded network to obtain the optimal solution for phase retrieval problem. In the pipeline of our method, deep priors are incorporated with the physical image formation algorithm, so that the proposed HIONet benefits from the representational capabilities of deep networks, as well as the interpretability and versatility of the traditional well-established algorithms. Moreover, inspired by compounding and aggregating diverse representations to benefit the network for more accurate inference, an enhanced version with cross-blocks features fusion, referred to as HIONet+, is designed to further improve the reconstruction. Extensive experimental results on noisy phase-free measurements show that the developed methods outperform the competitors in terms of quantitative metrics such as PSNR, SSIM and visual effects at all noise levels. In addition, non-oversampling sparse phase retrieval experiments consistently demonstrate that our methods outperform compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茹茹发布了新的文献求助10
刚刚
一号位完成签到,获得积分20
刚刚
聆听发布了新的文献求助10
刚刚
刚刚
能干彤完成签到,获得积分10
1秒前
越旻发布了新的文献求助10
3秒前
下次一定发布了新的文献求助10
3秒前
4秒前
laifeihong发布了新的文献求助50
5秒前
Jessica完成签到,获得积分0
5秒前
量子星尘发布了新的文献求助10
5秒前
出其东门完成签到,获得积分10
5秒前
核动力驴应助霍元甲采纳,获得10
6秒前
上官若男应助霍元甲采纳,获得10
6秒前
Mida应助开花不铁树采纳,获得10
9秒前
打打应助chemlink采纳,获得10
12秒前
12秒前
鱻雩关注了科研通微信公众号
14秒前
细心的思远完成签到,获得积分20
15秒前
爆米花应助ap2010采纳,获得30
15秒前
17秒前
17秒前
李健的小迷弟应助isabellae采纳,获得10
17秒前
开花不铁树完成签到,获得积分20
18秒前
19秒前
852应助鸡蛋灌饼与掉渣饼采纳,获得10
19秒前
19秒前
20秒前
Criminology34应助二五九采纳,获得10
22秒前
晚星发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
24秒前
星空发布了新的文献求助10
27秒前
文献发布了新的文献求助30
29秒前
30秒前
30秒前
31秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633845
求助须知:如何正确求助?哪些是违规求助? 4729625
关于积分的说明 14986791
捐赠科研通 4791677
什么是DOI,文献DOI怎么找? 2558987
邀请新用户注册赠送积分活动 1519408
关于科研通互助平台的介绍 1479690