已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

HIONet: Deep priors based deep unfolded network for phase retrieval

先验概率 可解释性 深度学习 相位恢复 计算机科学 人工智能 推论 机器学习 算法 模式识别(心理学) 数学 贝叶斯概率 傅里叶变换 数学分析
作者
Yuchi Yang,Qiusheng Lian,Xiaohua Zhang,Dan Zhang,Huibin Zhang
出处
期刊:Digital Signal Processing [Elsevier]
卷期号:132: 103797-103797 被引量:1
标识
DOI:10.1016/j.dsp.2022.103797
摘要

Probing the issue of phase retrieval has attracted researchers for many years, due to its wide range of application. Phase retrieval aims to recover an unknown signal from phase-free measurements. Classical alternative projection algorithms have the significant advantages of simplicity and few fine-tuning parameters. However, they suffer from non-convexity and often get stuck in local minima in the presence of noise disturbance. In this work, we develop an efficient hybrid model-based and data-driven approach to solve the phase retrieval problem with deep priors. To effectively utilize the inherent image priors, we propose a deep non-iterative (unfolded) network based on the classic HIO method, referred to as HIONet, which can adaptively learn inherent priors from the truth data distribution. Particularly, we replace the projection operator with trainable deep network, and as a result that learning parameterized function with weights in a supervised manner is equal to learning the prior knowledge from data with truth distributions. In turn, the deep priors learned during training enforce the unfolded network to obtain the optimal solution for phase retrieval problem. In the pipeline of our method, deep priors are incorporated with the physical image formation algorithm, so that the proposed HIONet benefits from the representational capabilities of deep networks, as well as the interpretability and versatility of the traditional well-established algorithms. Moreover, inspired by compounding and aggregating diverse representations to benefit the network for more accurate inference, an enhanced version with cross-blocks features fusion, referred to as HIONet+, is designed to further improve the reconstruction. Extensive experimental results on noisy phase-free measurements show that the developed methods outperform the competitors in terms of quantitative metrics such as PSNR, SSIM and visual effects at all noise levels. In addition, non-oversampling sparse phase retrieval experiments consistently demonstrate that our methods outperform compared methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Misty_完成签到,获得积分10
刚刚
CoverSX发布了新的文献求助10
刚刚
1秒前
pupu完成签到 ,获得积分10
2秒前
夜航星发布了新的文献求助10
5秒前
虚幻幼荷完成签到 ,获得积分10
13秒前
细腻的半仙完成签到,获得积分10
15秒前
SciGPT应助Chao123_采纳,获得10
15秒前
Akiii_完成签到,获得积分10
16秒前
星耀派派完成签到,获得积分10
21秒前
orixero应助quan采纳,获得10
23秒前
春日二三完成签到,获得积分10
24秒前
26秒前
gech完成签到,获得积分10
29秒前
Chao123_发布了新的文献求助10
29秒前
30秒前
沙丁鹌鹑完成签到 ,获得积分10
31秒前
33秒前
刘富贵发布了新的文献求助10
34秒前
恬恬完成签到,获得积分10
34秒前
翔哥完成签到,获得积分10
34秒前
大大完成签到 ,获得积分10
35秒前
田様应助大力的图图采纳,获得10
35秒前
郭郭要努力ya完成签到 ,获得积分10
37秒前
瑞ri发布了新的文献求助30
38秒前
面包战士发布了新的文献求助10
40秒前
levi完成签到 ,获得积分10
41秒前
共享精神应助CoverSX采纳,获得10
43秒前
rookyben完成签到,获得积分10
44秒前
46秒前
48秒前
48秒前
lzhh发布了新的文献求助20
50秒前
神采飞扬应助夜航星采纳,获得10
51秒前
早日毕业脱离苦海完成签到 ,获得积分10
52秒前
大雄完成签到,获得积分10
52秒前
bgerivers发布了新的文献求助10
53秒前
quan发布了新的文献求助10
53秒前
Cosmosurfer完成签到,获得积分10
55秒前
JamesPei应助瑞ri采纳,获得30
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875456
求助须知:如何正确求助?哪些是违规求助? 6516765
关于积分的说明 15677071
捐赠科研通 4993351
什么是DOI,文献DOI怎么找? 2691466
邀请新用户注册赠送积分活动 1633733
关于科研通互助平台的介绍 1591375