HIONet: Deep priors based deep unfolded network for phase retrieval

先验概率 可解释性 深度学习 相位恢复 计算机科学 人工智能 推论 机器学习 算法 模式识别(心理学) 数学 贝叶斯概率 傅里叶变换 数学分析
作者
Yuchi Yang,Qiusheng Lian,Xiaohua Zhang,Dan Zhang,Huibin Zhang
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:132: 103797-103797 被引量:1
标识
DOI:10.1016/j.dsp.2022.103797
摘要

Probing the issue of phase retrieval has attracted researchers for many years, due to its wide range of application. Phase retrieval aims to recover an unknown signal from phase-free measurements. Classical alternative projection algorithms have the significant advantages of simplicity and few fine-tuning parameters. However, they suffer from non-convexity and often get stuck in local minima in the presence of noise disturbance. In this work, we develop an efficient hybrid model-based and data-driven approach to solve the phase retrieval problem with deep priors. To effectively utilize the inherent image priors, we propose a deep non-iterative (unfolded) network based on the classic HIO method, referred to as HIONet, which can adaptively learn inherent priors from the truth data distribution. Particularly, we replace the projection operator with trainable deep network, and as a result that learning parameterized function with weights in a supervised manner is equal to learning the prior knowledge from data with truth distributions. In turn, the deep priors learned during training enforce the unfolded network to obtain the optimal solution for phase retrieval problem. In the pipeline of our method, deep priors are incorporated with the physical image formation algorithm, so that the proposed HIONet benefits from the representational capabilities of deep networks, as well as the interpretability and versatility of the traditional well-established algorithms. Moreover, inspired by compounding and aggregating diverse representations to benefit the network for more accurate inference, an enhanced version with cross-blocks features fusion, referred to as HIONet+, is designed to further improve the reconstruction. Extensive experimental results on noisy phase-free measurements show that the developed methods outperform the competitors in terms of quantitative metrics such as PSNR, SSIM and visual effects at all noise levels. In addition, non-oversampling sparse phase retrieval experiments consistently demonstrate that our methods outperform compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
懒得可爱完成签到,获得积分10
2秒前
彬墩墩发布了新的文献求助10
2秒前
Owen应助问津采纳,获得10
2秒前
Aswl发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
淡然以蓝完成签到,获得积分10
3秒前
july7292完成签到,获得积分10
3秒前
3秒前
DL发布了新的文献求助10
4秒前
4秒前
青岚发布了新的文献求助10
4秒前
共享精神应助玉渡山采纳,获得10
5秒前
小笼包发布了新的文献求助10
6秒前
meizijiu完成签到 ,获得积分10
7秒前
8秒前
8秒前
丘比特应助ycj采纳,获得10
8秒前
送你一朵彼岸花完成签到,获得积分10
9秒前
屯屯鱼发布了新的文献求助10
9秒前
9秒前
美满冷松完成签到,获得积分10
9秒前
10秒前
10秒前
刘夫人发布了新的文献求助30
10秒前
YANNAN完成签到,获得积分10
11秒前
Likx完成签到,获得积分10
11秒前
CAOHOU应助孙常浩采纳,获得10
11秒前
奇奇淼发布了新的文献求助10
12秒前
CipherSage应助小笼包采纳,获得10
12秒前
13秒前
小马甲应助琳琳采纳,获得30
14秒前
Endeavor完成签到,获得积分10
14秒前
shu发布了新的文献求助10
15秒前
www应助研友_8RlQ2n采纳,获得10
16秒前
流北爷发布了新的文献求助10
16秒前
开心晓啸发布了新的文献求助10
16秒前
热心市民小红花应助虎帅采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951344
求助须知:如何正确求助?哪些是违规求助? 3496706
关于积分的说明 11083953
捐赠科研通 3227150
什么是DOI,文献DOI怎么找? 1784304
邀请新用户注册赠送积分活动 868345
科研通“疑难数据库(出版商)”最低求助积分说明 801102