Experimental and numerical study of a reversible radiative sky cooling PV window

环境科学 辐射冷却 太阳增益 玻璃 冷负荷 光伏系统 天空 辐照度 辐射传输 气象学 被动冷却 太阳能 热的 窗口(计算) 太阳辐照度 大气科学 核工程 材料科学 空调 光学 计算机科学 机械工程 物理 工程类 电气工程 复合材料 操作系统
作者
Haida Tang,Juhu Wu,Chunying Li
出处
期刊:Solar Energy [Elsevier BV]
卷期号:247: 441-452 被引量:12
标识
DOI:10.1016/j.solener.2022.10.057
摘要

Transparent envelopes, such as windows, are usually the weak points of building thermal insulation and responsible for the tremendous cooling/heating energy consumption in the building sector. An innovative reversible radiative cooling PV (RRC-PV) window was proposed, which combined the radiative sky cooling and photovoltaic window technologies. It was capable of generating electricity from incident solar energy and reducing the indoor cooling load in the daytime whilst providing natural cooling at night by dissipating heat to outer space through atmospheric window. The thermal and electrical performances were tested. Simulation program was developed with MATLAB and validated successfully. Further, year-round energy performance was evaluated based on the TMY dataset of Shenzhen. The indoor heat gain was effectively reduced by utilizing RRC-PV window instead of common clear glazing window. The total reduction was 208.16 MJ/m2 per cooling season. Meanwhile, the beneficial indoor heat gain during heating season was unfavorably reduced. With the electricity generation taken into consideration, the annual comprehensive energy saving potential was as large as 264.23 MJ/m2 over common clear glazing window under hot summer and warm winter climate of Shenzhen, China. Thermal and energy performances of RRC-PV window could be favorably improved in regions with plentiful solar irradiance and cleaner atmosphere. The local climate and comprehensive energy performance should be evaluated before practical application of RRC-PV window with the proposed methodology. Future research and development of radiative cooling materials would enhance the building energy saving and contribute to the neutral carbon cause.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
赘婿应助yzxzdm采纳,获得30
2秒前
一番星发布了新的文献求助10
3秒前
3秒前
打打应助卜凡采纳,获得10
5秒前
彩虹毛毛虫完成签到,获得积分10
5秒前
clarklkq完成签到,获得积分10
6秒前
jenningseastera举报102755求助涉嫌违规
9秒前
9秒前
酷炫青烟完成签到,获得积分10
11秒前
Lucas应助Wen采纳,获得10
12秒前
baibai完成签到,获得积分10
12秒前
爆米花应助zhu采纳,获得10
12秒前
13秒前
13秒前
家养浩完成签到,获得积分10
13秒前
yzxzdm发布了新的文献求助30
14秒前
SciGPT应助Li采纳,获得10
14秒前
无花果应助myy采纳,获得10
16秒前
卜凡发布了新的文献求助10
16秒前
liu完成签到 ,获得积分10
16秒前
CC发布了新的文献求助10
19秒前
20秒前
23秒前
Orange应助奶糖采纳,获得10
25秒前
cbx发布了新的文献求助10
26秒前
关中人完成签到,获得积分10
26秒前
26秒前
甘博发布了新的文献求助10
27秒前
星辰大海应助06采纳,获得10
28秒前
28秒前
29秒前
wanqing完成签到,获得积分10
30秒前
None应助科研通管家采纳,获得10
31秒前
Orange应助科研通管家采纳,获得10
31秒前
yang应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
dragon发布了新的文献求助10
31秒前
CAOHOU应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991847
求助须知:如何正确求助?哪些是违规求助? 3532997
关于积分的说明 11260291
捐赠科研通 3272252
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425