A critical review of the techniques used for anomaly detection of HTTP-based attacks: taxonomy, limitations and open challenges

计算机科学 异常检测 入侵检测系统 数据科学 可比性 分类学(生物学) 领域(数学) 过时 数据挖掘 情报检索 万维网 数学 植物 生物 组合数学 古生物学 纯数学
作者
Jesús E. Díaz-Verdejo,Rafael Estepa,Antonio Estepa,Germán Madinabeitia
出处
期刊:Computers & Security [Elsevier]
卷期号:124: 102997-102997 被引量:1
标识
DOI:10.1016/j.cose.2022.102997
摘要

Intrusion Detection Systems (IDSs) and Web Application Firewalls (WAFs) offer a crucial layer of defense that allows organizations to detect cyberattacks on their web servers. Academic research overwhelmingly suggests using anomaly detection techniques to improve the performance of these defensive systems. However, analyzing and comparing the wide range of solutions in the scientific literature is challenging since they are typically presented as isolated (unrelated) contributions, and their results cannot be generalized. We believe that this impairs the industry’s adoption of academic results and the advancement of research in this field. This paper aims to shed light on the literature on anomaly-based detection of attacks that use HTTP request messages. We define a novel framework for anomaly detection based on six data processing steps grouped into two sequential phases: preprocessing and classification. Based on this framework, we provide a taxonomy and critical review of the techniques surveyed, emphasizing their limitations and applicability. Future approaches should take advantage of the syntax and semantics of the Uniform Resource Locator (URL), be scalable, and address their obsolescence. These aspects are frequently overlooked in the literature and pose a significant challenge in the current era of web services. For better comparability, authors should use adequate public datasets, follow a thorough methodology, and use appropriate metrics that fully show the pros and cons of the approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助zhuzhu的江湖采纳,获得10
1秒前
Ms发布了新的文献求助10
1秒前
Harbour发布了新的文献求助10
1秒前
英俊的铭应助可爱的弘文采纳,获得10
2秒前
orixero应助小飞鼠采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助20
3秒前
3秒前
神勇从波完成签到 ,获得积分10
3秒前
今后应助乔乔采纳,获得10
3秒前
852应助唐飒采纳,获得10
4秒前
18746005898发布了新的文献求助10
4秒前
4秒前
yeahokk完成签到,获得积分10
4秒前
4秒前
4秒前
恨海情天完成签到,获得积分10
5秒前
隐形曼青应助自然黄豆采纳,获得10
5秒前
Tian发布了新的文献求助10
6秒前
6秒前
hu123发布了新的文献求助10
6秒前
萧瑟处完成签到,获得积分10
6秒前
大个应助577采纳,获得10
7秒前
彭于晏应助Ms采纳,获得10
7秒前
慕青应助烯灯采纳,获得10
9秒前
9秒前
9秒前
英姑应助悦耳的盼芙采纳,获得10
9秒前
林林总总发布了新的文献求助10
9秒前
9秒前
深情安青应助lisali采纳,获得10
10秒前
10秒前
阿猫发布了新的文献求助10
10秒前
10秒前
Hello应助稳重的雅绿采纳,获得10
11秒前
11秒前
ty完成签到,获得积分10
11秒前
baobaot发布了新的文献求助10
11秒前
Yi完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836