Cross-Modal Retrieval Using Deep Learning

计算机科学 情态动词 情报检索 亲密度 分类 典型相关 预处理器 模态(人机交互) 人工智能 数据挖掘 数学 数学分析 化学 高分子化学
作者
Susanta Malik,Nikhil Bhardwaj,Rahul Bhardwaj,Satish Kumar
出处
期刊:Lecture notes in networks and systems 卷期号:: 725-734
标识
DOI:10.1007/978-981-19-3148-2_62
摘要

AbstractCross-modal retrieval intends to empower adaptable recovery across various modalities. The center of cross-modal retrieval is the manner by which to quantify the substance similitude between various sorts of information. In this work, we deal with a cross-modal retrieval technique, called Canonical Correlation Analysis (CCA). It accepts one sort of information as the question to recover pertinent information of another sort. The given indexed lists across different modalities can be useful to the clients to get exhaustive data about the objective occasions or points. With the quick development of various kinds of media information like texts, pictures, and recordings on the Internet, cross-modal retrieval turns out to be progressively significant in true applications. As of late, cross-modal retrieval has drawn in the significant consideration of the analysts from both scholarly communities also, industry. The test of cross-modal retrieval is the ticket to gauge the substance closeness between various kinds of information since they, which is alluded to as the heterogeneity hole. After data preprocessing and learning the mappings in the same space, we will try to find out the most similar samples based on pre calculated features of the samples in a given format. We will keep the features learned by VGG-16 precalculated and the features learned by text model would then be used to search for the most similar image that best explains the caption.KeywordsCross-modal retrievalVGG-16ModalitiesCanonical Correlation Analysis (CCA)Neural network

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
YYQX完成签到,获得积分10
2秒前
温柔樱桃发布了新的文献求助10
2秒前
杨yang完成签到,获得积分10
3秒前
勤奋的星月完成签到,获得积分10
4秒前
忙里偷闲发布了新的文献求助10
5秒前
5秒前
YYQX发布了新的文献求助10
6秒前
waug发布了新的文献求助10
6秒前
6秒前
6秒前
自信安荷完成签到,获得积分10
6秒前
难过梦竹完成签到,获得积分10
7秒前
7秒前
隐形的初瑶完成签到 ,获得积分10
8秒前
8秒前
zj完成签到,获得积分10
9秒前
9秒前
活力盼晴发布了新的文献求助10
9秒前
十二发布了新的文献求助10
10秒前
10秒前
乐乐应助研友_ndDGVn采纳,获得10
11秒前
DJ完成签到,获得积分10
11秒前
震人完成签到,获得积分10
11秒前
ningguizhang完成签到,获得积分10
11秒前
陈陈发布了新的文献求助10
12秒前
鸢尾完成签到,获得积分10
12秒前
13秒前
ZQP发布了新的文献求助10
13秒前
奕柯完成签到,获得积分20
13秒前
14秒前
15秒前
z7777777发布了新的文献求助10
15秒前
D1fficulty完成签到,获得积分10
15秒前
15秒前
十二完成签到,获得积分10
17秒前
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
田様应助科研通管家采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
System in Systemic Functional Linguistics A System-based Theory of Language 1000
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3119025
求助须知:如何正确求助?哪些是违规求助? 2769335
关于积分的说明 7700759
捐赠科研通 2424765
什么是DOI,文献DOI怎么找? 1287886
科研通“疑难数据库(出版商)”最低求助积分说明 620698
版权声明 599962