Cross-Modal Retrieval Using Deep Learning

计算机科学 情态动词 情报检索 亲密度 分类 典型相关 预处理器 模态(人机交互) 人工智能 数据挖掘 数学 数学分析 化学 高分子化学
作者
Susanta Malik,Nikhil Bhardwaj,Rahul Bhardwaj,Satish Kumar
出处
期刊:Lecture notes in networks and systems 卷期号:: 725-734
标识
DOI:10.1007/978-981-19-3148-2_62
摘要

AbstractCross-modal retrieval intends to empower adaptable recovery across various modalities. The center of cross-modal retrieval is the manner by which to quantify the substance similitude between various sorts of information. In this work, we deal with a cross-modal retrieval technique, called Canonical Correlation Analysis (CCA). It accepts one sort of information as the question to recover pertinent information of another sort. The given indexed lists across different modalities can be useful to the clients to get exhaustive data about the objective occasions or points. With the quick development of various kinds of media information like texts, pictures, and recordings on the Internet, cross-modal retrieval turns out to be progressively significant in true applications. As of late, cross-modal retrieval has drawn in the significant consideration of the analysts from both scholarly communities also, industry. The test of cross-modal retrieval is the ticket to gauge the substance closeness between various kinds of information since they, which is alluded to as the heterogeneity hole. After data preprocessing and learning the mappings in the same space, we will try to find out the most similar samples based on pre calculated features of the samples in a given format. We will keep the features learned by VGG-16 precalculated and the features learned by text model would then be used to search for the most similar image that best explains the caption.KeywordsCross-modal retrievalVGG-16ModalitiesCanonical Correlation Analysis (CCA)Neural network

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸣笛应助zying采纳,获得20
刚刚
zhhhh03完成签到,获得积分10
刚刚
Unicorn完成签到 ,获得积分10
1秒前
zihanwang应助shifeng采纳,获得10
1秒前
称心冬云发布了新的文献求助10
2秒前
lucas发布了新的文献求助10
2秒前
4秒前
萤火之森发布了新的文献求助10
4秒前
工商第一发布了新的文献求助10
4秒前
5秒前
可爱的函函应助笙默0329采纳,获得10
5秒前
siriuslee99完成签到,获得积分10
6秒前
JQM完成签到,获得积分10
8秒前
wanci应助5eV采纳,获得10
8秒前
安生完成签到,获得积分10
11秒前
11秒前
愤怒的念烟完成签到,获得积分20
11秒前
11秒前
Stormi发布了新的文献求助10
11秒前
脑洞疼应助彪壮的机器猫采纳,获得10
12秒前
尽如给尽如的求助进行了留言
13秒前
lumia完成签到,获得积分20
13秒前
Vi完成签到,获得积分10
14秒前
高贵灵槐完成签到 ,获得积分10
14秒前
琳琳琳琳565完成签到,获得积分10
15秒前
16秒前
16秒前
热心市民应助verbal2005采纳,获得10
17秒前
临江仙完成签到,获得积分10
18秒前
yuaasusanaann发布了新的文献求助30
18秒前
断章完成签到 ,获得积分10
19秒前
19秒前
不羁的红枫叶完成签到 ,获得积分10
19秒前
田様应助称心冬云采纳,获得10
20秒前
20秒前
21秒前
工商第一发布了新的文献求助10
21秒前
22秒前
JQM发布了新的文献求助10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014